期刊文献+
共找到400篇文章
< 1 2 20 >
每页显示 20 50 100
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测
1
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 Transformer网络 双向长短期记忆网络 完全集合经验模态分解
下载PDF
基于完全自适应噪声集合经验模态分解的短时交通流组合预测
2
作者 熊浩 张丽 郝椿淋 《物流科技》 2024年第19期97-103,共7页
为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,... 为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,利用排列熵算法(PE算法)计算各分量的复杂度;然后根据复杂度和随机性的不同分为高频和低频,分别使用ATT-TCN-BIGRU模型和ARIMA模型对高频分量和低频分量进行预测,最后叠加高频和低频的每个分量预测结果作为最终短时交通流预测值。仿真分析结果表明:与ARIMA模型、TCN模型、BIGRU模型、ATT-TCN-BIGRU模型相比,此模型的平均绝对误差及平均绝对百分比误差为最小,预测精度更高。 展开更多
关键词 短时交通流预测 完全自适应集合经验模态分解 排列熵 组合预测
下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究
3
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降 经验模态分解 集合经验模态分解 完全自适应集合经验模态分解 互相关分析
下载PDF
基于集合经验模态分解的心电信号自适应降噪及基线漂移修正
4
作者 邱展航 刘华珠 +1 位作者 赵晓芳 陈星豪 《东莞理工学院学报》 2024年第3期43-52,共10页
在心电信号的采集过程中,各种噪声的干扰会引起信号失真及基线漂移,进而影响对心脏信号的精准判断。针对此,提出一种基于集合经验模态分解的自适应算法。首先,对含有噪声及基线漂移的心电信号进行集合经验模态分解(EEMD),分解出固有模... 在心电信号的采集过程中,各种噪声的干扰会引起信号失真及基线漂移,进而影响对心脏信号的精准判断。针对此,提出一种基于集合经验模态分解的自适应算法。首先,对含有噪声及基线漂移的心电信号进行集合经验模态分解(EEMD),分解出固有模态函数(IMF)分量。然后,筛选出需要处理的IMF分量。最后,通过自适应窗口处理带噪的低阶IMF以及移除导致基线漂移的高阶IMF,从而达到降噪和修正基线漂移的目的。在MIT-BIH数据库中的实验结果表明,基于EEMD方法的降噪效果良好,在同等肌电噪声情况下,与基于EMD的自适应窗口法对比,在平均信噪比上提升1.7507,增幅约为13%;在同等基线漂移情况下,与基于EEMD的阈值法对比,在平均基线矫正率上下降0.0795,降幅约为14%。 展开更多
关键词 心电信号 集合经验模态分解 基线漂移
下载PDF
结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究
5
作者 尹逊哲 岳东杰 +2 位作者 翟长治 陈雨田 程晓云 《甘肃科学学报》 2024年第1期117-124,共8页
电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集... 电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集成”思想的深度学习模型进行预测。首先采用CEEMDAN算法将原始数据分解为多个子信号,并基于样本熵指标,使用K-Means算法将这些子信号重构为高频、低频和趋势3种信号。后利用VMD法对高频信号进行二次分解,借助自注意力LSTM模型实现对高低频信号的逐步预测。实验结果表明,与传统的LSTM模型相比,混合模型预测精度明显提高。在地磁平静期,该模型的预测效果得到显著改善,R^(2)、RMSE、MAE、MAPE代表的精度分别提升了32.2%、58.7%、51.2%、44.7%。因此,该模型能更准确地预测电离层闪烁现象的发生,对电离层闪烁的预测研究具有很好的参考价值。 展开更多
关键词 电离层 电离层闪烁预报 自适应声完备集合经验模态分解 变分模态分解 深度学习
下载PDF
基于自适应噪声完全集合经验模态分解算法和Hurst指数的地震数据去噪方法 被引量:2
6
作者 毛世榕 史水平 +5 位作者 玉壮基 苏梅艳 李莎 何嘉 幸符 衡张清 《地震学报》 CSCD 北大核心 2023年第2期258-270,共13页
在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经... 在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经验模态分解(CEEMDAN)算法与Hurst指数相结合的地震数据去噪方法。首先通过CEEMDAN方法将信号分解为一系列本征模函数(IMF),然后利用Hurst指数对滤波后的IMF分量进行识别,最后对地震数据IMF分量进行重构,从而实现数据去噪。与传统方法的去噪效果对比表明,本文方法可将低信噪比波形的去噪效果提高32%,将高信噪比波形的去噪效果提高6倍。同时对地磁数据的去噪结果表明,本文方法能够较完整地将地铁噪声从地磁信号波形中滤除。 展开更多
关键词 地震数据去噪 地磁数据去噪 自适应完全集合经验模态分解 HURST指数
下载PDF
基于集合经验模态分解和排列熵的核电厂信号降噪研究
7
作者 王雨辰 李鼎 +1 位作者 胡玥 孙晨雨 《核科学与工程》 CAS CSCD 北大核心 2024年第1期98-107,共10页
本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实... 本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实测信号中的有用信号和噪声信号的区分。对于后者,采用改进的小波软阈值降噪法进行降噪。最后,根据排列熵筛分后的有用信号和改进的小波软阈值降噪后的噪声信号进行重构,得到降噪后的信号。另外,本文也采用了主流的经验模态分解和局部均值分解对该信号进行了处理,并将分析结果进行对比。对比结果表明,基于本文所提方法得到的降噪后信号排列熵较小,表明降噪效果要优于以上两种方法。 展开更多
关键词 信号降 经验模态分解 局部均值分解 集合经验模态分解 排列熵
下载PDF
改进的自适应噪声总体集合经验模态分解在光谱信号去噪中的应用 被引量:18
8
作者 李晓莉 李成伟 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1754-1762,共9页
针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先... 针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先,将自适应噪声的总体集合经验模态分解方法引入近红外光谱去噪过程,介绍了经验模态分解、集合经验模态分解、互补集合经验模态分解及自适应噪声总体集合经验模态分解的基本原理及具体实现过程。然后,应用基于曲率和离散弗雷歇距离的自适应噪声总体集合经验模态分解改进算法对仿真信号和光谱信号进行去噪,并将其标准差和信噪比作为评价指标。实验结果表明:应用提出的方法得到的血糖浓度近红外光谱数据其标准差为0.179 4,信噪比为19.117 5dB,实现了信号与噪声的分离,改善了重构信号质量,具有良好的自适应性,可以有效识别并提取有用信息。 展开更多
关键词 无创血糖检测 近红外光谱 信号去噪 自适应声总体集合经验模态分解 曲率 离散弗雷歇距离
下载PDF
爆炸冲击波集合分解排列熵时变峰值降噪算法
9
作者 杜桂云 崔春生 +1 位作者 杨志飞 刘双峰 《探测与控制学报》 CSCD 北大核心 2024年第1期90-95,113,共7页
针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比... 针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比例距离下的含噪冲击波信号模型和实测数据来进行研究与验证。原始爆炸冲击波数据经CEEMDAN分解为若干个本征模态分量(IMFs);并以IMFs的MPE值作为分类指标,将IMFs分量划分为需滤波和存留两个类别,对含噪模型与实测数据进行降噪处理实验,将降噪处理后的IMFs分量和剩余的IMFs重构。试验结果表明,与贝塞尔低通数字滤波器、CEEMDAN降噪算法相比,该方法能够去除信号中含有的高频噪声,获得较好的降噪指标;同时尽可能地保留了信号中的尖峰与突变信息,是比较理想的爆炸冲击波信号降噪算法。 展开更多
关键词 爆炸冲击波 完全集合经验模式分解 排列熵
下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
10
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应集合经验模态分解 恒星日滤波
下载PDF
采用集合经验模态分解和改进阈值函数的心电自适应去噪方法 被引量:23
11
作者 尹丽 陈富民 +1 位作者 张琦 陈鑫 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第1期101-107,共7页
针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采... 针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采用过零率自适应判断各IMF的噪声类别:若IMF包含高频噪声,采用结合软硬阈值优缺点所提出的改进阈值函数以去除IMF分量中的高频噪声;若IMF包含低频的基线漂移,则采用中值滤波器抑制基线漂移。最后将处理后的IMF分量叠加,即可重构去噪后的心电信号。实验结果表明,与已有的小波阈值法去噪后的信噪比(SNR)和均方根误差(RSME)对比,所提方法对心电信号去噪效果更加显著,而且能完整地保留波形特征。 展开更多
关键词 心电自适应去噪 集合经验模态分解 过零率 改进阈值函数
下载PDF
基于完全集合经验模态分解和排列熵的局部放电信号的小波包去噪方法 被引量:25
12
作者 高佳程 田蕴卿 +1 位作者 朱永利 郑艳艳 《电力系统及其自动化学报》 CSCD 北大核心 2018年第3期1-7,共7页
为有效抑制含噪局部放电信号中的干扰成分,本文采用一种基于完全集合经验模态分解和排列熵的小波包去噪方法进行局部放电信号的去噪处理。该方法在对含噪信号进行完全经验模态分解的基础上,将分解后的各模态分量依据排列熵大小排列,确... 为有效抑制含噪局部放电信号中的干扰成分,本文采用一种基于完全集合经验模态分解和排列熵的小波包去噪方法进行局部放电信号的去噪处理。该方法在对含噪信号进行完全经验模态分解的基础上,将分解后的各模态分量依据排列熵大小排列,确定出需要舍弃和进一步分解的模态分量。针对需要继续降噪处理的分量进行小波包变换,将分解后的分量信号进行重构,得到去噪后的局部放电信号。利用该方法对局部放电的仿真和实测信号进行去噪处理,并与传统的小波去噪和经验模态分解去噪方法进行对比分析。仿真和实验表明,本文所采用的方法取得了理想的去噪效果,验证了该方法的有效性,有利于局部放电信号的模式识别等进一步处理。 展开更多
关键词 局部放电 信号去噪 完全集合经验模态分解 排列熵 小波包
下载PDF
基于新模态-小波包分解的超宽带雷达生命体征信号去噪算法
13
作者 余慧敏 朱姣姿 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期143-151,共9页
超宽带雷达具有高分辨率,穿透能力强,低功耗等优势,工作时人体无需接触任何电极或传感器,可以穿透衣服、废墟等非金属介质在较远的距离内检测人体生命体征信息,在非接触式生命体征检测方面具有很重要的应用价值。由于人类心跳信号容易... 超宽带雷达具有高分辨率,穿透能力强,低功耗等优势,工作时人体无需接触任何电极或传感器,可以穿透衣服、废墟等非金属介质在较远的距离内检测人体生命体征信息,在非接触式生命体征检测方面具有很重要的应用价值。由于人类心跳信号容易被呼吸谐波和其他噪声干扰,为了准确提取人体生命体征信号,提出一种基于改进的自适应噪声集合经验模态分解(ICEEMDAN)与小波包分解(WPD)结合的生命体征信号去噪方法。先通过超宽带雷达测量待测者的生命体征,获取人体所在空间位置提取出体表微动信号,对体表振动信号进行补偿与欠采样处理;利用ICEEMDAN-WPD的阈值去噪方法对微动信号进行模态分解,选取合适的模态分量去噪并进行重构,获取人体心跳微动信号的时频特征。实验结果表明,该算法相较于传统的去噪算法将相关系数提高到了0.9405,信噪比提高到了9.0938 dB,保留更多的生命体征信息的同时拥有更高的信噪比,可有效应用于生命体征检测领域。 展开更多
关键词 超宽带 自适应 集合经验模态分解 小波包分解 生命体征
下载PDF
基于改进互补集合经验模态分解的自适应小波熵阈值地震随机噪声压制算法 被引量:7
14
作者 孟娟 韩智明 李亚南 《科学技术与工程》 北大核心 2019年第30期52-61,共10页
针对互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)后不易有效区分有用信号和噪声的问题,以及传统小波去噪阈值选取的不足,提出基于改进CEEMD的自适应小波熵阈值地震随机噪声压制算法。将地震信号... 针对互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)后不易有效区分有用信号和噪声的问题,以及传统小波去噪阈值选取的不足,提出基于改进CEEMD的自适应小波熵阈值地震随机噪声压制算法。将地震信号进行CEEMD后,基于互信息熵和互相关系数获取高频含噪本征模态函数(intrinsic mode function,IMF);对含噪IMF进行多尺度小波分解,将高频小波系数等分为若干区间计算各区间小波熵,在此基础上得到不同尺度的自适应阈值,同时设计了改进阈值函数进行小波阈值去噪。仿真实验中,去噪残差和频谱分析表明,算法能在保留有用信号的同时有效去除随机噪声,实现保幅去噪。实际地震资料处理表明,相比其他去噪算法,算法能有效提高信噪比(signal-to-noise ratio,SNR)1 dB以上,降低均方误差(root mean square error,RMSE),具有良好的去噪能力。 展开更多
关键词 去噪 随机 经验模态分解 互补集合经验模态分解 小波熵 保幅 残差分析
下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:16
15
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应集合经验模式分解 模态混叠
下载PDF
基于集合经验模态分解和小波变换的轮轨力应变信号降噪 被引量:4
16
作者 刘庆杰 黄辉 雷晓燕 《城市轨道交通研究》 北大核心 2016年第11期26-29,37,共5页
为解决轮轨力应变信号中的噪声干扰问题,提出了基于集合经验模态分解与小波变换相结合的去噪方法。该方法能够判断出含有基线漂移和高频噪声的模态分量。对含有基线漂移的分量通过小波变换进行分解,将代表基线漂移的趋势项置零达到去除... 为解决轮轨力应变信号中的噪声干扰问题,提出了基于集合经验模态分解与小波变换相结合的去噪方法。该方法能够判断出含有基线漂移和高频噪声的模态分量。对含有基线漂移的分量通过小波变换进行分解,将代表基线漂移的趋势项置零达到去除基线漂移的目的。对于高频噪声,则是采用小波阈值法进行去除。实测轮轨力应变信号的去噪处理表明了该方法的有效性。 展开更多
关键词 轮轨力 集合经验模态分解 小波变换 去噪
下载PDF
基于经验模态分解的井架变形信号自适应降噪研究 被引量:2
17
作者 田丰 汪云甲 +1 位作者 王昆 王猛 《煤炭工程》 北大核心 2012年第4期109-111,共3页
在进行建筑物高精度动态监测时,真实位移信号往往淹没在强噪声之中,利用经验模态分解对监测信号进行多尺度分解,根据尺度标准化模量累积均值指标,确定噪声分离层次,对有效尺度分量重构得到降噪后的变形信号,建立了变形监测信号的自适应... 在进行建筑物高精度动态监测时,真实位移信号往往淹没在强噪声之中,利用经验模态分解对监测信号进行多尺度分解,根据尺度标准化模量累积均值指标,确定噪声分离层次,对有效尺度分量重构得到降噪后的变形信号,建立了变形监测信号的自适应降噪模型。工程实例表明该方法具有优越性。 展开更多
关键词 井架 经验模态分解 变形监测 自适应
下载PDF
基于集合经验模态分解和小波阈值的真空泵振动信号降噪方法 被引量:5
18
作者 李一博 刘嘉玮 +2 位作者 芮小博 王晢 綦磊 《航天器环境工程》 2019年第5期450-457,共8页
真空泵的振动信号具有非平稳、非线性的特性,且夹杂着大量背景噪声,难以直接对其特征信号进行提取、分析,阻碍对真空泵的在线故障诊断。为此,文章提出基于集合经验模态分解(EEMD)的真空泵振动信号小波阈值降噪方法:首先将振动信号进行E... 真空泵的振动信号具有非平稳、非线性的特性,且夹杂着大量背景噪声,难以直接对其特征信号进行提取、分析,阻碍对真空泵的在线故障诊断。为此,文章提出基于集合经验模态分解(EEMD)的真空泵振动信号小波阈值降噪方法:首先将振动信号进行EEMD分解,得到若干个本征模态函数(IMF)与余项,然后引入归一化自相关函数对IMF分量进行筛选,再对筛选出的IMF分量进行小波阈值降噪处理,最后将降噪后的IMF分量与未处理的IMF分量和余项进行重构,得到降噪后的真空泵振动信号。对仿真与实验信号进行降噪处理的结果表明该方法优于现有的降噪方法,为真空泵振动信号的降噪提供了新的途径。 展开更多
关键词 真空泵 振动信号 集合经验模态分解 小波阈值
下载PDF
基于集合经验模态的微弱激光脉冲信号自动去噪方法
19
作者 李志远 姚明菊 胡荣 《激光杂志》 CAS 北大核心 2023年第12期202-206,共5页
由于微弱激光脉冲信号中存在噪声,需对其进行去噪处理,为此,提出基于集合经验模态的微弱激光脉冲信号自动去噪方法。首先建立微弱激光脉冲信号模型,模拟信号回波;其次采用集合经验模态分解方法分解微弱激光脉冲信号,并计算模态分量的排... 由于微弱激光脉冲信号中存在噪声,需对其进行去噪处理,为此,提出基于集合经验模态的微弱激光脉冲信号自动去噪方法。首先建立微弱激光脉冲信号模型,模拟信号回波;其次采用集合经验模态分解方法分解微弱激光脉冲信号,并计算模态分量的排序熵,根据计算结果消除虚假分量;再采用基于峰度检测的加窗方法获取噪声与有效信号的分界点,确定噪声区域;最后引入小波滤波器在噪声区域内对微弱激光脉冲信号自动去噪。实验结果表明,所提方法的噪声检测精度高、去噪效果好、去噪效率高。 展开更多
关键词 集合经验模态分解 峰度检测 排序熵 微弱激光脉冲信号 信号去噪
下载PDF
基于集合经验模态分解-小波阈值方法的爆破振动信号降噪方法 被引量:21
20
作者 费鸿禄 刘梦 +1 位作者 曲广建 高英 《爆炸与冲击》 EI CAS CSCD 北大核心 2018年第1期112-118,共7页
为了更好地消除混杂在爆破信号中的噪声,引入一种基于集合经验模态分解和小波阈值共同作用的降噪方法。首先将信号进行集合经验模态分解,然后选择含噪的模态函数分量进行小波阈值降噪处理,最后把处理后的分量和未处理的分量进行叠加,重... 为了更好地消除混杂在爆破信号中的噪声,引入一种基于集合经验模态分解和小波阈值共同作用的降噪方法。首先将信号进行集合经验模态分解,然后选择含噪的模态函数分量进行小波阈值降噪处理,最后把处理后的分量和未处理的分量进行叠加,重构的信号即为降噪信号。该方法不仅能有效的去除噪声,还能使爆破波形保留其真实性和完整性。 展开更多
关键词 爆破信号 集合经验模态分解 小波阈值
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部