期刊文献+
共找到2,277篇文章
< 1 2 114 >
每页显示 20 50 100
基于动态模态分解-自适应变步长油浸式电力变压器绕组瞬态温升快速计算方法
1
作者 刘刚 郝世缘 +2 位作者 朱章宸 高成龙 刘云鹏 《电工技术学报》 EI CSCD 北大核心 2024年第12期3895-3906,共12页
为了改善当前油浸式电力变压器绕组瞬态温升计算过慢的问题,该文结合动态模态分解法和自适应变步长法提出了一种动态模态分解(DMD)-自适应变步长(ATS)快速计算方法。首先,该方法引入了动态模态分解算法,利用动态系统中前若干时步提取得... 为了改善当前油浸式电力变压器绕组瞬态温升计算过慢的问题,该文结合动态模态分解法和自适应变步长法提出了一种动态模态分解(DMD)-自适应变步长(ATS)快速计算方法。首先,该方法引入了动态模态分解算法,利用动态系统中前若干时步提取得到的变化特征,近似拟合其后一段时间内的系统变化,并通过选取主模态降低计算时间。其次,为了提高DMD算法性能,进一步提出结合ATS方法,通过自适应调整计算步长,提高瞬态计算效率;为了验证算法的计算精度和效率,建立了八分区分匝绕组数值传热模型并在此基础上将该文所提算法与仿真软件Fluent的计算结果进行对比,结果表明,在计算精度方面,二者结果几乎一致,计算误差最大不超过0.3 K;对于计算效率,该文算法的总计算时间为5.99 s,仅为Fluent总计算时间的1/89,且算法时间步数仅为Fluent的4.7%。最后,为了验证DMD-ATS算法的工程实用性,基于产品级油浸式电力变压器绕组结构搭建温升实验平台,并将所提算法计算结果与实验结果进行对比,结果表明所提算法在各测量线饼的误差均处在可接受的范围内,最大误差仅为4.57 K,且包含预处理时间在内的计算时间仅为69.14 s,计算时步仅需17步,较当前主流的计算方法效率有明显提高。综合算法的精度和效率,充分说明所提算法具有一定工程价值。 展开更多
关键词 动态模态分解 自适应步长 模态选取 瞬态温升问题
下载PDF
采用变分模态分解与领域自适应的表面肌电信号手势识别
2
作者 姜海燕 许先静 +1 位作者 钟凌珺 李竹韵 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期75-87,共13页
针对传统机器学习在表面肌电信号手势识别领域的适应性和准确性不足,以及新用户因个体生理和行为差异在已有模型上表现不佳的问题,提出一种利用卷积神经网络模型并有效克服肌电数据分布差异的算法,用于提升手势识别的性能。首先对肌电... 针对传统机器学习在表面肌电信号手势识别领域的适应性和准确性不足,以及新用户因个体生理和行为差异在已有模型上表现不佳的问题,提出一种利用卷积神经网络模型并有效克服肌电数据分布差异的算法,用于提升手势识别的性能。首先对肌电信号进行变分模态分解,构建易于识别的表面肌电图像,并提出了一种卷积神经网络模型进行手势识别,提升用户相关的肌电信号手势识别准确率;同时利用迁移学习中的领域自适应和模型微调技术,提升用户无关的肌电信号手势识别准确率,并将所提算法在NinaPro DB1肌电数据集中进行了3分类、4分类、5分类和12分类共4组评估验证。结果表明:在4组评估验证中,用户相关的肌电信号手势识别平均准确率分别达到了99.28%、99.30%、98.39%和93.40%,用户无关的肌电信号手势识别平均准确率分别达到了94.05%、92.60%、88.38%和70.03%,表明本文提出的算法在表面肌电信号手势识别中具有良好的效果,为实现人机交互中的普适性的肌电设备开发提供了一种可行的方案。 展开更多
关键词 领域自适应 卷积神经网络 手势识别 模态分解 表面肌电信号
下载PDF
一种自适应选取参数的改进变分模态分解方法
3
作者 李志强 李德文 +2 位作者 左洪福 蔡景 张营 《机电工程》 CAS 北大核心 2024年第6期980-991,共12页
针对传统的变分模态分解(VMD)方法中模态数和惩罚参数难以确定的问题,提出了一种自适应选取参数的改进变分模态分解方法。首先,综合考虑了故障的冲击性和周期性特点,以Gini指数和谱峰比指标为基础构建了加权谱峰比(WSPR)指标;然后,采用... 针对传统的变分模态分解(VMD)方法中模态数和惩罚参数难以确定的问题,提出了一种自适应选取参数的改进变分模态分解方法。首先,综合考虑了故障的冲击性和周期性特点,以Gini指数和谱峰比指标为基础构建了加权谱峰比(WSPR)指标;然后,采用非洲秃鹫优化算法(AVOA)进行了寻优,得到了最佳的模态数和惩罚参数组合,克服了人为主观选择参数的弊端;最后,在VMD分解信号后,利用加权谱峰比最大原则自适应选取了敏感内涵模态分量,对最佳IMF进行了包络解调分析,提取了滚动轴承早期故障特征,利用仿真信号、单一故障滚动轴承试验信号及复合故障滚动轴承试验信号对所述方法进行了验证。实验结果表明:该方法可以准确地提取出仿真信号的故障频率(100 Hz)、单一故障信号的故障频率(236.4 Hz)和复合故障信号的故障频率(内圈故障频率149.14 Hz、外圈故障频率86.39 Hz),并且在与其他方法和指标的对比中,其最佳IMF的包络谱图中故障特征频率及其倍数频的谱峰更加明显,准确率更高且鲁棒性更强。研究结果表明:该方法能够有效提取轴承早期故障信号的微弱特征,实现故障类型准确识别的目的。 展开更多
关键词 滚动轴承 早期故障诊断 模态分解 模态 惩罚参数 非洲秃鹫优化算法 加权谱峰比指标
下载PDF
基于自适应变分模态分解的齿轮箱故障诊断
4
作者 谢锋云 汪淦 +2 位作者 赏鉴栋 樊秋阳 朱海燕 《推进技术》 EI CAS CSCD 北大核心 2024年第9期218-227,共10页
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值... 针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强。利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量。使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别。通过实验验证,该模型10次测试的平均准确率可达95.04%。与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法。 展开更多
关键词 航空齿轮箱 故障诊断 信号降噪 自适应模态分解 粒子群算法 核极限学习机
下载PDF
基于自适应变分模态分解的组合模型风电功率预测
5
作者 鹿凯 石开明 +3 位作者 贾欢 金勇杰 王旭 徐谱鑫 《电源学报》 CSCD 北大核心 2024年第2期283-289,共7页
风电机组出力的高波动与随机性,影响电力系统安全稳定运行与风电预测精度,针对此提出结合风电功率波动特性研究的风电功率预测方法。首先从时间与机组规模尺度分析风电功率波动特性,并指导选取合适的风电数据用于风电功率预测;然后建立... 风电机组出力的高波动与随机性,影响电力系统安全稳定运行与风电预测精度,针对此提出结合风电功率波动特性研究的风电功率预测方法。首先从时间与机组规模尺度分析风电功率波动特性,并指导选取合适的风电数据用于风电功率预测;然后建立基于最小二乘支持向量机的风电机组短期功率预测模型,采用自适应变分模态分解实现风电数据分频,并采用改进粒子群优化最小二乘支持向量机模型中影响回归预测的模型参数。实验结果表明,预测模型自适应性较强,通过预测误差评价指标,可证明预测方法的有效性。 展开更多
关键词 最小二乘支持向量机 风电功率预测 自适应模态分解 改进粒子群优化 频预测
下载PDF
侵彻过载信号自适应变分模态分解时频分析方法
6
作者 谢雨岑 郜王鑫 +2 位作者 邵志豪 房安琪 张珂 《探测与控制学报》 CSCD 北大核心 2024年第4期69-78,共10页
传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信... 传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信号频率成分复杂且具有的非平稳性、随机性特点,该方法以模态的混叠效应和稀疏性作为信号的分解约束,采用非支配排序遗传算法(NSGA-II)搜索获取变分模态分解算法的分解个数和二次惩罚因子,再基于参数优化的变分模型,确定各模态函数的中心频率和带宽,完成过载信号各频率成分的自适应分解。通过对实测侵彻过载信号分析可见,相比于通用经验模态分解算法,该方法可以有效抑制模态混叠现象,且在时域和频域上均具有更好的分辨率,能为引信系统的信号处理、仿真模型验证、结构设计提供有效信息支撑。 展开更多
关键词 侵彻过载信号 时频 模态混叠 自适应优化模态分解
下载PDF
混凝土缺陷信号变分模态分解与超声成像方法
7
作者 张奇 韩庆邦 +3 位作者 孙刘家 靳琪琳 王溢秋 刘志鹏 《应用声学》 CSCD 北大核心 2024年第4期829-835,共7页
混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而... 混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而提高成像算法对混凝土缺陷间散射波互干扰的鲁棒性。通过设置对比试验,研究了不同缺陷混凝土结构中该信号处理方式对于成像结果的影响。试验结果表明,该方法对于弱散射及散射干扰具有更好的鲁棒性,相比基于原始数据的成像方法能够更好地还原混凝土内部结构。 展开更多
关键词 混凝土 超声检测 模态分解 本征模态函数
下载PDF
GPR信号去噪的变分模态分解
8
作者 刘财 商耀达 +1 位作者 鹿琪 徐杨杨 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第3期1042-1053,共12页
为了进一步提高探地雷达(ground penetrating radar,GPR)数据的信噪比,压制由随机扰动引起的随机绕射能量,将二维变分模态分解(two-dimensional variational mode decomposition,2D-VMD)引入二维GPR数据的噪声压制处理中。首先,对GPR数... 为了进一步提高探地雷达(ground penetrating radar,GPR)数据的信噪比,压制由随机扰动引起的随机绕射能量,将二维变分模态分解(two-dimensional variational mode decomposition,2D-VMD)引入二维GPR数据的噪声压制处理中。首先,对GPR数据进行2D-VMD处理,并分析各阶本征模态函数(intrinsic mode function,IMF)分量及其对应的频率-波数域谱来确定雷达剖面中的各回波类型。然后,计算IMF分量与原始数据的互相关系数来确定信号模态和噪声模态,并对信号模态进行重构得到降噪后的数据。理论数据和实测数据测试表明,相比于传统的1D-VMD法,2D-VMD滤波后的含噪正演记录峰值信噪比由6.44 dB增加到7.72 dB;经2D-VMD降噪处理后的雷达剖面在保留有效信号的基础上,可以有效压制随机扰动带来的噪声,并且得到的雷达剖面同相轴连续性更好。 展开更多
关键词 探地雷达 二维模态分解 频率-波数谱 互相关系数 去噪
下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别
9
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化模态分解(IVMD) 时域衰减速度 声振法
下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断
10
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 模态分解 综合评价指标 复合缩放排列熵 混合算法 堆叠降噪自编码器
下载PDF
基于逐次变分模态分解的飞轮-火电一次调频控制策略
11
作者 张萍 刘海涛 《全球能源互联网》 CSCD 北大核心 2024年第2期166-178,共13页
随着新型电力系统的大力建设与推广,火电机组面临的调频压力增大,提出一种逐次变分模态分解的飞轮-火电一次调频控制策略。首先,以飞轮储能和火电机组为研究对象,建立考虑新能源占比的飞轮-火电一次调频模型;其次,将一次调频功率指令利... 随着新型电力系统的大力建设与推广,火电机组面临的调频压力增大,提出一种逐次变分模态分解的飞轮-火电一次调频控制策略。首先,以飞轮储能和火电机组为研究对象,建立考虑新能源占比的飞轮-火电一次调频模型;其次,将一次调频功率指令利用逐次变分模态方法分解,由火电机组响应分解后的低频功率指令,同时设计飞轮储能下垂优化控制方法,实现飞轮储能与火电机组响应频率变化的协同控制;最后在不同工况下仿真验证,结果表明所提策略可有效避免火电机组一次调频时的频繁出力,减小火电机组响应频率变化时的调控要求,同时可最大限度地利用飞轮储能调频容量并保证飞轮储能调频期间的运行安全,进一步提升了系统的频率响应能力。 展开更多
关键词 飞轮储能 火电机组 逐次模态分解 一次调频 下垂控制
下载PDF
基于变分模态分解的采空区“三带”微震信号能量衰减规律
12
作者 贾宝新 郑克楠 周琳力 《岩土力学》 EI CAS CSCD 北大核心 2024年第4期991-1002,共12页
为探明微震信号能量在采空区“三带”结构中的衰减规律,拟开展采空区覆岩相似模型试验,采集人工激发微震波经由采空区结构传播的微震信号,通过变分模态分解(variational mode decomposition,VMD)处理微震信号,获取各频率下模态分量。针... 为探明微震信号能量在采空区“三带”结构中的衰减规律,拟开展采空区覆岩相似模型试验,采集人工激发微震波经由采空区结构传播的微震信号,通过变分模态分解(variational mode decomposition,VMD)处理微震信号,获取各频率下模态分量。针对采空区微震信号在VMD下各模态分量中心频率与能量之间的关系展开分析。根据中心频率法确定微震信号最佳模态数量,并计算微震信号欠分解状态、最佳分解状态、过分解状态下各分量能量;对各震源下信号最佳分解状态时各模态分量能量与中心频率分布关系进行拟合,分析在“三带”结构中,微震信号不同传播状态下各结构层对信号能量影响作用。研究结果表明:(1)在VMD过程中,人工激发震动信号有效模态数量在6~11范围内,微震信号能量随模态数量变化明显。(2)采用幂函数可实现对微震信号模态能量与频率关系的拟合,且拟合状态良好(决定系数大于0.9),其中低频模态分量包含能量占信号总能量近50%;采用高斯函数可以拟合震源各分量能量在频域上的分布表现,拟合状态较好,且表现出高斯单峰特征。(3)微震信号穿越采空区“三带”结构,微震信号能量随震源位置与传感器距离增加而减小,同时信号能量随震源位置到达传感器穿越岩层数量增加而减小,信号能量在经由垮落带时,能量变化明显,相较于裂隙带和弯曲下沉带,垮落带对信号能量衰减作用明显。 展开更多
关键词 模态分解(VMD) 微震信号 信号频率特征 信号能量衰减 采空区“三带”结构
下载PDF
基于变分模态分解和稀疏表示的局部放电信号去噪算法
13
作者 钟俊 刘桢羽 +2 位作者 赵晓坤 唐妮妮 毕潇文 《现代信息科技》 2024年第1期77-83,共7页
鉴于局部放电信号受各种噪声的干扰,文章提出一种基于变分模态分解和稀疏分解的局部放电信号去噪算法。以稀疏表示算法为核心,基于局部放电信号的特性构建其过完备字典,再采用匹配追踪算法在过完备字典中搜索出原信号的最佳匹配原子集... 鉴于局部放电信号受各种噪声的干扰,文章提出一种基于变分模态分解和稀疏分解的局部放电信号去噪算法。以稀疏表示算法为核心,基于局部放电信号的特性构建其过完备字典,再采用匹配追踪算法在过完备字典中搜索出原信号的最佳匹配原子集合重构信号;为解决过完备字典维度过高而导致的搜索次数太多的问题,引进变分模态分解算法和峭度值筛选进行预处理和预重构;优化后的方法可以限制稀疏分解算法的搜索范围和字典参数,以减小计算复杂度。仿真验证以及对工程环境中实测信号的去噪结果表明:该方法具有更好的降噪效果,即使在极低信噪比的情况下,依旧能提取出有效的局部放电信号。 展开更多
关键词 局部放电信号 模态分解 峭度 稀疏表示 机器学习 匹配追踪算法 自适应
下载PDF
基于变分模态分解和复合变量选取的短期负荷预测 被引量:1
14
作者 周纲 黄瑞 +3 位作者 刘谋海 李文博 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第2期122-129,共8页
精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,... 精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,提出复合变量选取算法分析筛选影响负荷波动的关键因素,有效去除预测干扰信息并进一步简化预测模型的复杂度,通过兼顾数据短期依赖和长期依赖的长短时记忆神经网络对各子序列进行预测,并将各子序列预测结果进行叠加实现最终的短期负荷预测,据此建立基于变分模态分解和复合变量选取的短期负荷预测方法。选取2019年整年长沙市实际数据验证结果表明,提出算法在复杂外部影响因素下,能准确筛选负荷预测的关键影响因素,相比传统预测模型,提出模型结构更简单、预测精度更高。 展开更多
关键词 短期负荷预测 模态分解 复合量选取算法 长短时记忆神经网络
下载PDF
基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法 被引量:2
15
作者 黄睿 朱玲俐 +3 位作者 高峰 王渝红 杨亚兰 熊小峰 《现代电力》 北大核心 2024年第1期97-105,共9页
电力负荷序列易受多重外部因素影响而呈现复杂性,不利于精准预测。为此,提出一种基于变分模态分解(variational mode decomposition,VMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short-term memory netw... 电力负荷序列易受多重外部因素影响而呈现复杂性,不利于精准预测。为此,提出一种基于变分模态分解(variational mode decomposition,VMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short-term memory network,CNN-LSTM)相结合的短期电力负荷并行预测方法。先采用VMD将负荷数据分解为规律性强的各本征模态函数(intrinsic mode function,IMF)及残差;再将各分量分别输入到各自对应的CNN-LSTM混合预测网络,获得各初始预测值,并将该值与由气候、日期类型等组合得到的相关因素特征集相结合,进一步得出修正预测值;最终,叠加各分量修正预测值即得到完整预测结果。在实际负荷数据上做验证分析,结果表明,考虑相关外部因素特征集后日负荷预测平均相对误差均值可降低2.18%。与几种常规负荷预测方法进行效果对比,验证了该方法的有效性和可行性。 展开更多
关键词 短期负荷预测 模态分解 卷积神经网络 长短期记忆网络 相关因素特征集
下载PDF
遗传算法优化变分模态分解在轴承故障特征提取中的应用 被引量:1
16
作者 单玉庭 刘韬 +1 位作者 褚惟 缪护 《噪声与振动控制》 CSCD 北大核心 2024年第1期148-153,204,共7页
针对变分模态分解(Variational Mode Decomposition,VMD)过程中模态分量个数和惩罚参数大小依赖先验知识,单一或顺序优化单一参数可能导致局部最优的问题,提出以包络熵和包络峭度因子作为适应度函数,利用遗传算法全局寻优的特点,对VMD... 针对变分模态分解(Variational Mode Decomposition,VMD)过程中模态分量个数和惩罚参数大小依赖先验知识,单一或顺序优化单一参数可能导致局部最优的问题,提出以包络熵和包络峭度因子作为适应度函数,利用遗传算法全局寻优的特点,对VMD的模态分量个数和惩罚参数组合进行优化。通过最优参数组合下的VMD对信号进行分解,可以获得多个本征模态分量(Intrinsic Mode Function,IMF),选择适应度函数最小IMF分量作为有效IMF分量进行包络解调,从中提取轴承信号的故障特征频率。对多种轴承故障类型信号进行分析并与其他方法对比,结果表明所提方法能有效提取轴承故障特征,有助于实现微弱故障条件下轴承故障特征频率的准确提取。 展开更多
关键词 故障诊断 模态分解 包络熵 包络峭度因子 遗传算法 包络解调
下载PDF
基于变分模态分解和集成学习的光伏发电预测 被引量:1
17
作者 邱书琦 蹇照民 +3 位作者 方立雄 秦婧雯 万俊岭 袁培森 《智慧电力》 北大核心 2024年第3期32-38,共7页
针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法。采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电... 针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法。采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电量分量预测值进行组合,获得最终发电量预测结果。实验结果表明,所提方法在公开数据集上对光伏发电量进行预测的均方误差、平均绝对误差、决定系数值分别为0.2232,0.3387,0.9797,与其他方法相比具有更高的预测准确率和更小的误差。 展开更多
关键词 模态分解 光伏发电预测 Stacking集成学习 贪心算法
下载PDF
基于相关变分模态分解和CNN-LSTM的变压器油中溶解气体体积分数预测 被引量:1
18
作者 范志远 杜江 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期263-273,I0020,共12页
为解决变压器油中溶解气体实际监测数据中噪声信号对模型预测性能的影响以及单一长短期记忆神经网络(long short-term memory,LSTM)无法对数据间的深层特征进行有效提取的问题,提出了一种融合了相关变分模态分解(correlation variationa... 为解决变压器油中溶解气体实际监测数据中噪声信号对模型预测性能的影响以及单一长短期记忆神经网络(long short-term memory,LSTM)无法对数据间的深层特征进行有效提取的问题,提出了一种融合了相关变分模态分解(correlation variational mode decomposition,CVMD)、1维卷积神经网络(one dimensional convolutional neural network,1D-CNN)和LSTM的组合预测模型。首先,利用CVMD去除原始气体序列中的噪声信号,并将去噪序列分解为1组相对平稳的子序列分量;然后,针对各子序列分量分别构建CNN-LSTM预测模型,利用1D-CNN挖掘数据间的深层特征形成特征向量,并将其输入到LSTM中进行预测;最后,对各子序列预测结果叠加重构,得到最终的气体预测值。并通过4组对比实验对所提模型进行了全方位、多角度的验证。算例研究结果表明,所提模型单步和多步预测的平均绝对百分比误差分别为1.53%和2.09%。相较于现有模型,该文所提模型在单步和多步预测性能上均有明显提升,为变压器在线监测和故障预警提供了重要技术支撑。 展开更多
关键词 油中溶解气体 相关模态分解 1维卷积神经网络 长短期记忆神经网络 气体体积数预测
下载PDF
变分模态分解新能源电力系统低频振荡控制方法 被引量:1
19
作者 王馨悦 马星河 《粘接》 CAS 2024年第6期42-45,共4页
为了提高对高比例新能源电力系统低频振荡能量的计算精度,进而提升低频振荡控制效果,变分模态分解的基础上,研究高比例新能源电力系统低频振荡控制方法。将变分模态分解算法应用于提取电力系统低频振荡信号;使用A3C算法,训练低频振荡能... 为了提高对高比例新能源电力系统低频振荡能量的计算精度,进而提升低频振荡控制效果,变分模态分解的基础上,研究高比例新能源电力系统低频振荡控制方法。将变分模态分解算法应用于提取电力系统低频振荡信号;使用A3C算法,训练低频振荡能量;通过返回机制和梯度计算获取低频振荡的能量参数,利用这些参数建立二维模糊控制的模糊规则,然后对输出量进行去模糊化处理,从而实现对低频振荡的有效控制。实验结果表明,使用所设计方法对高比例新能源电力系统低频振荡进行控制后,其低频振荡位于0.5 Hz左右,控制效果较好。 展开更多
关键词 模态分解 高比例新能源 电力系统 低频振荡控制 A3C算法
下载PDF
遗传算法优化变分模态分解提取舰船辐射噪声特征线谱方法
20
作者 沈鑫玉 陈涛 +2 位作者 郭良浩 刘建军 陈艳丽 《应用声学》 CSCD 北大核心 2024年第1期1-11,共11页
特征线谱提取是舰船目标识别的一个重要研究环节,常采用传统的DEMON谱分析方法,处理过程中,一般对舰船噪声时域信号未予抑噪,低信噪比情况下,传统DEMON谱分析性能差。对此,提出一种采用遗传算法优化变分模态分解方法,用于分解舰船噪声... 特征线谱提取是舰船目标识别的一个重要研究环节,常采用传统的DEMON谱分析方法,处理过程中,一般对舰船噪声时域信号未予抑噪,低信噪比情况下,传统DEMON谱分析性能差。对此,提出一种采用遗传算法优化变分模态分解方法,用于分解舰船噪声原时域信号,获得抑制噪声后的舰船噪声重构信号,进而有效提取了舰船目标噪声幅度调制特征线谱。该方法首先采用遗传算法优化变分模态分解的两个关键输入参数(分解所取模态个数和惩罚因子),对变分模态分解得到的各阶固有模态分量加以判别,去除噪声主导分量,保留信号主导分量,使重构舰船噪声信号显著抑制了干扰噪声,然后对降噪后的重构信号进行频谱分析,获得目标噪声调制特征线谱。理论分析、仿真和实验数据处理结果表明,相比传统DEMON谱分析法,基于遗传算法优化变分模态分解的舰船噪声特征线谱提取方法具有更好的噪声抑制能力,所获取的舰船噪声幅度调制特征线谱信噪比明显高于传统DEMON方法,具有一定优势,前景良好。 展开更多
关键词 舰船辐射噪声 遗传算法 模态分解 特征线谱提取
下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部