期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VMD散布熵与改进灰狼优化SVDD的轴承半监督故障诊断研究 被引量:21
1
作者 付文龙 谭佳文 王凯 《振动与冲击》 EI CSCD 北大核心 2019年第22期190-197,共8页
为充分挖掘未标记样本所蕴含的有效信息,进而提升诊断精度,研究提出一种基于变分模态分解(VMD)散布熵与改进灰狼优化支持向量数据描述(SVDD)的轴承半监督故障诊断方法。采用中心频率观察法确定VMD分解模态参数K,进而将原始信号分解为一... 为充分挖掘未标记样本所蕴含的有效信息,进而提升诊断精度,研究提出一种基于变分模态分解(VMD)散布熵与改进灰狼优化支持向量数据描述(SVDD)的轴承半监督故障诊断方法。采用中心频率观察法确定VMD分解模态参数K,进而将原始信号分解为一系列本征模态函数并计算各分量的散布熵值,构成测试样本和部分标记的训练样本;再由半监督模糊C均值(SSFCM)聚类对训练样本进行聚类分析,从而对所得聚类簇进行SVDD建模,同时采用k近邻准则进行决策优化,并由所提自适应变异灰狼算法优化SVDD模型参数;将基于最优参数训练的改进决策SVDD模型用于测试样本的故障模式识别。试验分析和对比结果表明,所提方法具有较好的诊断性能。 展开更多
关键词 变分模态分解 散布熵 支持向量数据描述 自适应变异灰狼算法 半监督模糊C均值 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部