期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于强度折减采样与高斯过程回归的空间变异土坡自适应可靠度分析
1
作者 刘亚栋 刘贤 +1 位作者 黎学优 杨智勇 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第5期978-987,共10页
土体参数空间变异性对土坡稳定性的影响已受到岩土工程界的广泛关注,繁冗的计算量是空间变异土坡可靠度分析面临的瓶颈问题。基于强度折减采样(SRS)和高斯过程回归(GPR)模型,提出一种适用于高维空间的空间变异土坡自适应可靠度分析方法(... 土体参数空间变异性对土坡稳定性的影响已受到岩土工程界的广泛关注,繁冗的计算量是空间变异土坡可靠度分析面临的瓶颈问题。基于强度折减采样(SRS)和高斯过程回归(GPR)模型,提出一种适用于高维空间的空间变异土坡自适应可靠度分析方法(SRS-GPR)。首先采用Karhunen-Loève展开法将空间变异土体强度参数离散为高维随机变量,随后根据SRS生成土坡临界样本点,接着通过GPR构建土体参数随机场与边坡安全系数之间的高维非线性函数关系,并基于主动学习策略自动搜寻最优训练样本点,迭代更新GPR模型。在此基础上,结合GPR模型和蒙特卡洛模拟进行边坡可靠度分析。最后,通过两个典型算例验证所提方法的准确性、高效性、鲁棒性和适用性。结果表明:所提方法可有效识别靠近极限状态面附近的最优样本点,使得迭代更新的GPR模型在该区域的预测精度逐渐提高。此外,所提方法不受随机变量维度的影响,可直接在高维参数空间应用,且对边坡稳定性模型的调用次数较少,在计算效率方面具有显著优势。 展开更多
关键词 折减采样 高斯过程回归 自适应可靠度分析 高维空间 空间变异性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部