期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究 被引量:1
1
作者 尹逊哲 岳东杰 +2 位作者 翟长治 陈雨田 程晓云 《甘肃科学学报》 2024年第1期117-124,共8页
电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集... 电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集成”思想的深度学习模型进行预测。首先采用CEEMDAN算法将原始数据分解为多个子信号,并基于样本熵指标,使用K-Means算法将这些子信号重构为高频、低频和趋势3种信号。后利用VMD法对高频信号进行二次分解,借助自注意力LSTM模型实现对高低频信号的逐步预测。实验结果表明,与传统的LSTM模型相比,混合模型预测精度明显提高。在地磁平静期,该模型的预测效果得到显著改善,R^(2)、RMSE、MAE、MAPE代表的精度分别提升了32.2%、58.7%、51.2%、44.7%。因此,该模型能更准确地预测电离层闪烁现象的发生,对电离层闪烁的预测研究具有很好的参考价值。 展开更多
关键词 电离层 电离层闪烁预报 自适应噪声完备集合经验模态分解 变分模态分解 深度学习
下载PDF
一种添加部分自适应噪声的集成经验模态分解方法
2
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
3
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
下载PDF
基于自适应噪声完备经验模态分解−样本熵−长短期记忆神经网络和核密度估计的短期电力负荷区间预测 被引量:20
4
作者 赵会茹 张士营 +2 位作者 赵一航 刘红雨 邱宝红 《现代电力》 北大核心 2021年第2期138-146,共9页
短期电力负荷具有较强的随机性和波动性,其预测的准确性对于提升供电可靠性、电力系统运行经济性至关重要。针对传统确定性预测不能反映未来负荷波动的弊端,基于“点预测+区间估计”的思路提出了一种短期负荷区间预测方法。首先基于自... 短期电力负荷具有较强的随机性和波动性,其预测的准确性对于提升供电可靠性、电力系统运行经济性至关重要。针对传统确定性预测不能反映未来负荷波动的弊端,基于“点预测+区间估计”的思路提出了一种短期负荷区间预测方法。首先基于自适应噪声完备经验模态分解方法将负荷序列分解为多个模态分量,并根据不同序列样本熵的计算结果将序列进行重构以降低运算量。在此基础上,针对每一个分量分别构建长短期记忆神经网络预测模型,得到未来负荷点预测值。基于此利用核密度估计方法对预测误差的分布进行估计,进而结合点预测结果实现未来短期负荷的区间预测。通过将此模型与其他模型进行对比,结果表明此模型能够实现更低的点预测误差,同时在区间预测中也表现出更好的综合性能。 展开更多
关键词 短期负荷预测 自适应噪声完备经验模态分解 长短期记忆神经网络 核密度估计
下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:15
5
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
下载PDF
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:32
6
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
下载PDF
基于注意力时间卷积网络的农产品期货分解集成预测 被引量:1
7
作者 张大斌 黄均杰 +1 位作者 凌立文 林锐斌 《南京信息工程大学学报》 CAS 北大核心 2024年第3期311-320,共10页
针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货... 针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货预测方法.首先,使用CEEMDAN将时间序列分解为多尺度多频率的本征模态分量(IMF)与残差,降低了序列建模复杂度;其次,使用融合多阶段自注意力单元Transformer-Encoder的时间卷积网络(TCN)对各个分量子序列进行特征提取与预测,优化了序列显著特征建模权重;最后,将各个子序列预测值线性相加集成得到最终预测结果.以南华期货公司农产品指数中的大豆期货指数为研究对象,采用时序交叉验证与参数迁移的方式进行模型重训练,消融和对比实验结果表明,提出的新模型在RMSE、MAE和DS三个评价指标上具有良好的效果,验证了该模型对农产品期货预测的有效性. 展开更多
关键词 农产品期货 自适应噪声完备经验模态分解 自注意力机制 Transformer-Encoder 时间卷积网络
下载PDF
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法 被引量:1
8
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进的自适应噪声完备集合经验模态分解 分布熵 信噪比
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
9
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:1
10
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测
11
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进的自适应噪声完备经验模态分解(iceemdan) 排列熵(PE) 双向长短期记忆神经网络(BiLSTM) 核极限学习(KELM)
下载PDF
基于自适应时序分解筛选的大坝变形预测模型
12
作者 谷宇 苏怀智 +3 位作者 张帅 姚可夫 刘明凯 漆一宁 《水利学报》 EI CSCD 北大核心 2024年第9期1045-1057,1070,共14页
高精度的大坝变形分析和预测是掌握大坝工作性态、诊断大坝异常的重要手段。针对现有模型信息特征挖掘不充分、泛化能力弱、难以实现精准预测等问题,采用灰狼算法优化自适应噪声完备经验模态分解解决多维参数标定问题,使用阈值评价指标... 高精度的大坝变形分析和预测是掌握大坝工作性态、诊断大坝异常的重要手段。针对现有模型信息特征挖掘不充分、泛化能力弱、难以实现精准预测等问题,采用灰狼算法优化自适应噪声完备经验模态分解解决多维参数标定问题,使用阈值评价指标保留变形时序数据的有效信息特征;引入交叉验证的递归特征选择法通过多个学习器综合筛选出最优因子集,移除冗余特征、提取有效信息并增强模型可解释性;考虑时序数据特性优化双向长短期记忆神经网络时间窗步数,结合大坝变形数据降噪、最优特征因子输入等多种方法,构建大坝变形预测模型。以实际工程为例,结合多种预测模型进行对比分析,结果表明该模型具备挖掘非线性信息能力,预测性能得到改善,可为大坝安全监测提供参考。 展开更多
关键词 大坝变形预测 灰狼算法 阈值降噪 双向长短期记忆神经网络 自适应噪声完备经验模态分解
下载PDF
基于改进经验模态分解和支持向量机的短期风速组合预测 被引量:8
13
作者 韩世浩 孙树敏 +4 位作者 程艳 王士柏 吕志超 赵志澎 邵泰衡 《科学技术与工程》 北大核心 2019年第36期172-178,共7页
为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,S... 为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,SVM)的组合短期风速预测方法。首先用CEEMDAN对原始风速时间序列进行分解,得到一系列不同频率的子序列;其次,使用BA-SVM组合模型预测对分解后的各个子序列分别进行预测;最后,将各子序列的预测结果叠加得到风速预测值。仿真结果表明,该模型提高了预测精度,减小了误差。 展开更多
关键词 风速预测 自适应噪声的完全集成经验模态分解(CEEMDAN) 蝙蝠算法 支持向量机 组合模型
下载PDF
基于多尺度分解的微地震噪声压制与初至检测方法研究 被引量:8
14
作者 唐杰 温雷 +1 位作者 李聪 戚瑞轩 《石油物探》 EI CSCD 北大核心 2019年第4期517-523,共7页
地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提... 地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提出了一种自适应间隔阈值去除固有模态中噪声成分的方法,最后将去噪后的分量相加重构去噪后的信号。应用Hilbert变换计算每个分量的振幅,然后计算持续能量比,利用给定的阈值找到局部最大值,计算得到高能量的地震信号的到达时间。理论模型数据及实际微地震资料的处理结果表明,去噪后数据的信噪比得到了改进,相对于传统的空间域滤波与变换域阈值去噪,该去噪方法具有显著的优势及较好的应用价值,与Hilbert变换结合的初至检测方法可以有效地检测微地震信号初至。 展开更多
关键词 微地震 随机噪声压制 改进的完备总体经验模态分解 固有模态函数 自适应间隔阈值 重构 初至检测
下载PDF
基于多尺度分解集成组合模型的碳价格预测研究 被引量:6
15
作者 王喜平 于一丁 《分布式能源》 2022年第1期1-11,共11页
准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成... 准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)算法对碳价原始序列进行分解,并以综合贡献度指数(comprehensive contribution index,CCI)对分量进行重构,得到短期、长期和趋势分量;然后,采用门限广义自回归条件异方差(threshold generalized auto-regressive conditional heteroscedasticity,TGARCH)模型预测短期分量,以布谷鸟搜索(cuckoo search,CS)算法优化超参数的长短期记忆(long-short term memory,LSTM)神经网络预测长期和趋势分量;在此基础上,采用非线性集成算法对各分量预测结果进行集成,得到最终的碳价预测结果。以湖北碳市场为样本数据进行实证分析,结果表明所构建的预测模型性能最优,预测结果更准确,可为监管部门和企业决策提供有效信息。 展开更多
关键词 碳价格预测 长短期记忆(LSTM)模型 门限广义自回归条件异方差(TGARCH)模型 改进型自适应噪声完备集成经验模态(iceemdan)分解 超参数优化
下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取 被引量:1
16
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
17
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
下载PDF
一种基于模态分解和机器学习的锂电池寿命预测方法 被引量:10
18
作者 肖浩逸 何晓霞 +1 位作者 梁佳佳 李春丽 《储能科学与技术》 CAS CSCD 北大核心 2022年第12期3999-4009,共11页
锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动... 锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动分量里的噪音对模型预测能力的影响,且又不完全抛弃波动分量里的特征信息,本工作提出使用随机森林(RF)算法得到每个波动分量的重要性排序和数值,以此作为每个分量对原始数据解释能力的权重。然后将权重值和不同波动分量构建的神经网络模型得到的预测结果进行加权重构,进而得到锂离子电池的RUL预测。文章对比了单一模型和组合模型预测精度,加入了RF的组合模型预测精度让五种神经网络的表现都有进一步的提升。最后,对表现较好的两种网络——LSTM和GRU引入了简单编码解码(SED)的机制,让其更好地学习到序列数据全局时间上的特征和远程的依赖关系。以NASA数据集作为研究对象进行该方法的性能测试。实验结果表明,CEEMDAN-RF-SED-LSTM模型对电池RUL预测表现效果好,预测结果相比单一模型具有更低的误差。 展开更多
关键词 锂离子电池 寿命预测 自适应噪声完整集成经验模态分解 随机森林 神经网络
下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型
19
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
下载PDF
自适应噪声完备经验模态分解排列熵结合支持向量机的心音分类方法研究 被引量:6
20
作者 刘美君 吴全玉 +2 位作者 丁胜 潘玲佼 刘晓杰 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2022年第2期311-319,共9页
针对心音信号非平稳性、非线性的特征,为了更直观地把心音信号的特征显示出来,提高分类识别的高效性,提出了一种自适应噪声完备经验模态分解(CEEMDAN)排列熵作为心音信号的特征向量,通过支持向量机(SVM)进行心音分类识别的方法。首先,... 针对心音信号非平稳性、非线性的特征,为了更直观地把心音信号的特征显示出来,提高分类识别的高效性,提出了一种自适应噪声完备经验模态分解(CEEMDAN)排列熵作为心音信号的特征向量,通过支持向量机(SVM)进行心音分类识别的方法。首先,将原始心音信号进行CEEMDAN,得到若干从高频到低频的模态分量(IMF)。其次,利用IMF分量与原始信号的相关系数、能量因子和信噪比来优选IMF做Hilbert变换,得到分量信号的瞬时频率,再计算各IMF排列熵值组成特征向量。最后,将特征向量输入SVM二分类器进行正常与异常心音信号的分类识别。对源自2016年PhysioNet/CinC挑战赛的100例心音样本进行正常与异常的分类,准确度达到87%。研究表明本文方法相比于常用的EMD和EEMD排列熵的方法准确度提高了18%~24%,可见,CEEMDAN排列熵结合SVM的方法能够有效识别正常和异常心音。 展开更多
关键词 心音分类 自适应噪声完备经验模态分解 排列熵 支持向量机
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部