There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental cha...There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental changes.Therefore,an improved ViBe algorithm based on adaptive detection of moving targets was proposed.Firstly,in the background model initialization process,the real background could be obtained by setting adjusting parameters in mean background modeling,and the ViBe background model was initialized by using the background.Secondly,in the foreground detection process,an adaptive radius threshold was introduced according to the scene change to adaptively detect the foreground.Finally,mathematical morphological close operation was used to fill the holes in the detection results.The experimental results show that the improved method can effectively suppress the Ghost region and detect the foreground target more completely under the condition of environmental changes.Compared with the traditional ViBe algorithm,the detection accuracy is improved by more than 10%,the false detection rate and the missed detection rate are reduced by 20% and 7% respectively.In addition,the improved method satisfies the real-time requirements.展开更多
Due to the limitation of Depth Of Field (DOF) of microscope, the regions which are not within the DOF will be blurring after imaging. Thus for micro-image fusion, the most important step is to identify the blurring re...Due to the limitation of Depth Of Field (DOF) of microscope, the regions which are not within the DOF will be blurring after imaging. Thus for micro-image fusion, the most important step is to identify the blurring regions within each micro-image, so as to remove their undesirable impacts on the fused image. In this paper, a fusion algorithm based on a novel region growing method is proposed for micro-image fusion. The local sharpness of micro-image is judged block by block, then blocks whose sharpness is lower than an adaptive threshold are used as seeds, and the sharpness of neighbors of each seed are evaluated again during the region growing until the blurring regions are identified completely. With the decreasing in block size, the obtained region segmentation becomes more and more accurate. Finally, the micro-images are fused with pixel-wise fusion rules. The experimental results show that the proposed algorithm benefits from the novel region segmentation and it is able to obtain fused micro-image with higher sharpness compared with some popular image fusion method.展开更多
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)。
文摘There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental changes.Therefore,an improved ViBe algorithm based on adaptive detection of moving targets was proposed.Firstly,in the background model initialization process,the real background could be obtained by setting adjusting parameters in mean background modeling,and the ViBe background model was initialized by using the background.Secondly,in the foreground detection process,an adaptive radius threshold was introduced according to the scene change to adaptively detect the foreground.Finally,mathematical morphological close operation was used to fill the holes in the detection results.The experimental results show that the improved method can effectively suppress the Ghost region and detect the foreground target more completely under the condition of environmental changes.Compared with the traditional ViBe algorithm,the detection accuracy is improved by more than 10%,the false detection rate and the missed detection rate are reduced by 20% and 7% respectively.In addition,the improved method satisfies the real-time requirements.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y1101240)Zhejiang Scientific and Technical Key Innovation Team (2010R50009)+1 种基金Natural Science Foundation of Ningbo (2011A610200, 2011A610197)Student Research and Innovation Training Program of Zhejiang Province (New-shoot Talents Project 2011R-405054) (A00162100400)
文摘Due to the limitation of Depth Of Field (DOF) of microscope, the regions which are not within the DOF will be blurring after imaging. Thus for micro-image fusion, the most important step is to identify the blurring regions within each micro-image, so as to remove their undesirable impacts on the fused image. In this paper, a fusion algorithm based on a novel region growing method is proposed for micro-image fusion. The local sharpness of micro-image is judged block by block, then blocks whose sharpness is lower than an adaptive threshold are used as seeds, and the sharpness of neighbors of each seed are evaluated again during the region growing until the blurring regions are identified completely. With the decreasing in block size, the obtained region segmentation becomes more and more accurate. Finally, the micro-images are fused with pixel-wise fusion rules. The experimental results show that the proposed algorithm benefits from the novel region segmentation and it is able to obtain fused micro-image with higher sharpness compared with some popular image fusion method.