期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
邻域精英集体信息和种群全局信息自适应的多策略差分进化算法
1
作者 宋晓宇 朱彦霖 赵明 《计算机应用研究》 CSCD 北大核心 2024年第12期3710-3715,共6页
为了使差分进化算法(differential evolution,DE)能够更好地利用个体邻域和整个种群的信息,提出了邻域精英信息和种群全局信息自适应的多策略差分进化算法(adaptive multi-strategy differential evolution algorithm for neighborhood ... 为了使差分进化算法(differential evolution,DE)能够更好地利用个体邻域和整个种群的信息,提出了邻域精英信息和种群全局信息自适应的多策略差分进化算法(adaptive multi-strategy differential evolution algorithm for neighborhood elite collective information and population global information,MSDE-NECPG)。首先,充分利用个体邻域中多个精英个体的信息对变异策略进行引导,使搜索向更好的方向移动,提高开发能力。其次,为了让邻域的状态能够随着搜索过程不断地进化,引入邻域更新机制。当邻域最优个体连续多代更新失败,邻域可能陷入局部最优,此时扩大邻域半径,提高探索能力。同时,引入变异策略“DE/current-to-pbest”,这一策略不划分邻域,是基于种群的全局信息。两个策略基于个体的改进率进行多策略的自适应,在局部信息和全局信息之间进行平衡。此外,为了防止参数的错误交互,缩放因子F、交叉率CR根据成功历史积累进行更新,采用分组的参数自适应机制,不断适应搜索过程。最后,为了验证其有效性,在CEC2014的30个基准函数上,与5种迄今为止比较先进的差分进化算法进行比较,实验结果表明,所提算法的精度、稳定性和收敛速度比得上这5种先进的算法。 展开更多
关键词 差分进化 邻域精英信息 多策略自适应 参数自适应
下载PDF
求解并联冷机负荷分配问题的改进FODPSO算法 被引量:4
2
作者 于军琪 赵泽华 +2 位作者 赵安军 王福 陈时羽 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期1901-1914,共14页
针对并联冷机负荷分配问题,以系统总功率最小为优化目标,建立满足系统末端负荷需求的并联冷机负荷分配优化模型,提出一种改进分数阶达尔文粒子群优化(IFODPSO)算法,以每台冷机的部分负荷率为优化变量进行求解,优化并联冷机系统的运行策... 针对并联冷机负荷分配问题,以系统总功率最小为优化目标,建立满足系统末端负荷需求的并联冷机负荷分配优化模型,提出一种改进分数阶达尔文粒子群优化(IFODPSO)算法,以每台冷机的部分负荷率为优化变量进行求解,优化并联冷机系统的运行策略以节能。首先,针对基本分数阶达尔文粒子群优化(FODPSO)算法粒子初始化过于分散的问题,提出利用蒙特卡洛方法结合基本算数运算符生成初始种群;其次,针对其在高维优化中难以同时搜寻到每一维最优解的问题,引入多重优化提高算法稳定性并加快收敛速度;第三,针对易陷入局部最优的问题,通过自适应多策略行为使粒子能够根据其适应度选择合适的更新方式,提高了算法的搜索能力;最后,以2个典型的并联冷机系统作为案例验证所提出算法的性能,并与其他现有优化算法的实验结果进行对比。研究结果表明:相比于其他算法,IFODPSO算法在并联冷机负荷分配问题的求解中能够取得更加显著的节能效果,得到更优的运行策略,同时收敛精度、收敛速度和稳定性都有了显著提高。 展开更多
关键词 负荷分配 并联冷机 分数阶达尔文粒子群优化算法 蒙特卡洛 多重优化 自适应多策略
下载PDF
基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测 被引量:22
3
作者 张亚超 刘开培 +1 位作者 秦亮 方仍存 《电网技术》 EI CSCD 北大核心 2016年第7期2045-2051,共7页
针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子... 针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子序列建立基于上下界直接估量的区间预测模型。为分析不同区间构造的差异,提出一种体现训练目标值偏离区间范围影响的新型区间预测评估指标作为目标函数,并采用基于混沌萤火虫结合多策略融合自适应差分进化的优化算法寻求其最优解,以提高模型预测性能。最后,以某一风电场实际功率数据为算例,验证了所提模型能获得可靠优良的多步区间预测结果,可为风电功率多步不确定性预测提供一种新的有效途径。 展开更多
关键词 多步区间预测 聚类经验模态分解-样本熵 极限学习机 多策略自适应差分进化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部