In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper...In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.展开更多
The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering...The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering game based on frequency subbands selection and predetemined threshold.Such threshold is being obtained in Gaussian and multipath fading channel according to the frequency-matching principle and BER performance.The dynamic selection of subbands will obtain high use efficiency without the help of frequency hopping,and propound a new thought to improve band limited communication for wireless multi-hop communication network.The effectiveness of the adaptive filtering method has been verified by interleaving spread spectrum orthogonal frequency division multiplexing (ISS-OFDM) in different interference conditions,and the simulating results based on network simulator 2 (NS2) indicate that system BER can be improved greatly.展开更多
We propose an adaptive fractional window increasing algorithm (AFW) to improve the performance of the fractional window increment (FeW) in (Nahm et al., 2005). AFW fully utilizes the bandwidth when the network is idle...We propose an adaptive fractional window increasing algorithm (AFW) to improve the performance of the fractional window increment (FeW) in (Nahm et al., 2005). AFW fully utilizes the bandwidth when the network is idle, and limits the op-erating window when the network is congested. We evaluate AFW and compare the total throughput of AFW with that of FeW in different scenarios over chain, grid, random topologies and with hybrid traffics. Extensive simulation through ns2 shows that AFW obtains 5% higher throughput than FeW, whose throughput is significantly higher than that of TCP-Newreno, with limited modi-fications.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.60972038,No.61001077,No.61101105 the Scientific Research Foundation for Nanjing University of Posts and Telecommunications under Grant No.NY211007+2 种基金 the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2011D05 Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20113223120002 University Natural Science Research Project of Jiangsu Province under Grant No.11KJB510016
文摘In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.
基金Supported by the National Nature Science Foundation of China(No.61302074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20122301120004)+1 种基金the Natural Science Foundation of Heilongjiang Province(No.QC2013C061)Research Foundation of Education Bureau of Heilongjiang Province(No.12531480)
文摘The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering game based on frequency subbands selection and predetemined threshold.Such threshold is being obtained in Gaussian and multipath fading channel according to the frequency-matching principle and BER performance.The dynamic selection of subbands will obtain high use efficiency without the help of frequency hopping,and propound a new thought to improve band limited communication for wireless multi-hop communication network.The effectiveness of the adaptive filtering method has been verified by interleaving spread spectrum orthogonal frequency division multiplexing (ISS-OFDM) in different interference conditions,and the simulating results based on network simulator 2 (NS2) indicate that system BER can be improved greatly.
基金Project supported by the National Natural Science Foundation of China (Nos. 60625103, 60702046 and 60832005)the Doctoral Fund of MOE of China (No. 20070248095)+3 种基金the China International Science and Technology Cooperation Program (No. 2008DFA11630)the Shanghai Science and Technology PUJIANG Talents Project (No. 08PJ14067)Innovation Key Project (No. 08511500400)the Qualcomm Research Grant
文摘We propose an adaptive fractional window increasing algorithm (AFW) to improve the performance of the fractional window increment (FeW) in (Nahm et al., 2005). AFW fully utilizes the bandwidth when the network is idle, and limits the op-erating window when the network is congested. We evaluate AFW and compare the total throughput of AFW with that of FeW in different scenarios over chain, grid, random topologies and with hybrid traffics. Extensive simulation through ns2 shows that AFW obtains 5% higher throughput than FeW, whose throughput is significantly higher than that of TCP-Newreno, with limited modi-fications.