人工神经网络的自适应结构学习(AdaNet)是基于Boosting集成学习的神经结构搜索框架,可通过集成子网创建高质量的模型。现有的AdaNet所产生的子网之间的差异性不显著,因而限制了集成学习中泛化误差的降低。在AdaNet设置子网网络权重和集...人工神经网络的自适应结构学习(AdaNet)是基于Boosting集成学习的神经结构搜索框架,可通过集成子网创建高质量的模型。现有的AdaNet所产生的子网之间的差异性不显著,因而限制了集成学习中泛化误差的降低。在AdaNet设置子网网络权重和集成子网的两个步骤中,使用Adagrad、RMSProp、Adam、RAdam等自适应学习率方法来改进现有AdaNet中的优化算法。改进后的优化算法能够为不同维度参数提供不同程度的学习率缩放,得到更分散的权重分布,以增加AdaNet产生子网的多样性,从而降低集成学习的泛化误差。实验结果表明,在MNIST(Mixed National Institute of Standards and Technology database)、Fashion-MNIST、带高斯噪声的Fashion-MNIST这三个数据集上,改进后的优化算法能提升AdaNet的搜索速度,而且该方法产生的更加多样性的子网能提升集成模型的性能。在F1值这一评估模型性能的指标上,改进后的方法相较于原方法,在三种数据集上的最大提升幅度分别为0.28%、1.05%和1.10%。展开更多
For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de...For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.展开更多
文摘人工神经网络的自适应结构学习(AdaNet)是基于Boosting集成学习的神经结构搜索框架,可通过集成子网创建高质量的模型。现有的AdaNet所产生的子网之间的差异性不显著,因而限制了集成学习中泛化误差的降低。在AdaNet设置子网网络权重和集成子网的两个步骤中,使用Adagrad、RMSProp、Adam、RAdam等自适应学习率方法来改进现有AdaNet中的优化算法。改进后的优化算法能够为不同维度参数提供不同程度的学习率缩放,得到更分散的权重分布,以增加AdaNet产生子网的多样性,从而降低集成学习的泛化误差。实验结果表明,在MNIST(Mixed National Institute of Standards and Technology database)、Fashion-MNIST、带高斯噪声的Fashion-MNIST这三个数据集上,改进后的优化算法能提升AdaNet的搜索速度,而且该方法产生的更加多样性的子网能提升集成模型的性能。在F1值这一评估模型性能的指标上,改进后的方法相较于原方法,在三种数据集上的最大提升幅度分别为0.28%、1.05%和1.10%。
基金Supported by the National Natural Science Foundation of China (60904018, 61203040)the Natural Science Foundation of Fujian Province of China (2009J05147, 2011J01352)+1 种基金the Foundation for Distinguished Young Scholars of Higher Education of Fujian Province of China (JA10004)the Science Research Foundation of Huaqiao University (09BS617)
文摘For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.