期刊文献+
共找到1,566篇文章
< 1 2 79 >
每页显示 20 50 100
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测
1
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 Transformer网络 双向长短期记忆网络 完全集合经验模态分解
下载PDF
基于完全自适应噪声集合经验模态分解的短时交通流组合预测
2
作者 熊浩 张丽 郝椿淋 《物流科技》 2024年第19期97-103,共7页
为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,... 为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,利用排列熵算法(PE算法)计算各分量的复杂度;然后根据复杂度和随机性的不同分为高频和低频,分别使用ATT-TCN-BIGRU模型和ARIMA模型对高频分量和低频分量进行预测,最后叠加高频和低频的每个分量预测结果作为最终短时交通流预测值。仿真分析结果表明:与ARIMA模型、TCN模型、BIGRU模型、ATT-TCN-BIGRU模型相比,此模型的平均绝对误差及平均绝对百分比误差为最小,预测精度更高。 展开更多
关键词 短时交通流预测 完全自适应噪声集合经验模态分解 排列熵 组合预测
下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究
3
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
下载PDF
结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究 被引量:1
4
作者 尹逊哲 岳东杰 +2 位作者 翟长治 陈雨田 程晓云 《甘肃科学学报》 2024年第1期117-124,共8页
电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集... 电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集成”思想的深度学习模型进行预测。首先采用CEEMDAN算法将原始数据分解为多个子信号,并基于样本熵指标,使用K-Means算法将这些子信号重构为高频、低频和趋势3种信号。后利用VMD法对高频信号进行二次分解,借助自注意力LSTM模型实现对高低频信号的逐步预测。实验结果表明,与传统的LSTM模型相比,混合模型预测精度明显提高。在地磁平静期,该模型的预测效果得到显著改善,R^(2)、RMSE、MAE、MAPE代表的精度分别提升了32.2%、58.7%、51.2%、44.7%。因此,该模型能更准确地预测电离层闪烁现象的发生,对电离层闪烁的预测研究具有很好的参考价值。 展开更多
关键词 电离层 电离层闪烁预报 自适应噪声完备集合经验模态分解 变分模态分解 深度学习
下载PDF
基于集合经验模态分解的心电信号自适应降噪及基线漂移修正 被引量:1
5
作者 邱展航 刘华珠 +1 位作者 赵晓芳 陈星豪 《东莞理工学院学报》 2024年第3期43-52,共10页
在心电信号的采集过程中,各种噪声的干扰会引起信号失真及基线漂移,进而影响对心脏信号的精准判断。针对此,提出一种基于集合经验模态分解的自适应算法。首先,对含有噪声及基线漂移的心电信号进行集合经验模态分解(EEMD),分解出固有模... 在心电信号的采集过程中,各种噪声的干扰会引起信号失真及基线漂移,进而影响对心脏信号的精准判断。针对此,提出一种基于集合经验模态分解的自适应算法。首先,对含有噪声及基线漂移的心电信号进行集合经验模态分解(EEMD),分解出固有模态函数(IMF)分量。然后,筛选出需要处理的IMF分量。最后,通过自适应窗口处理带噪的低阶IMF以及移除导致基线漂移的高阶IMF,从而达到降噪和修正基线漂移的目的。在MIT-BIH数据库中的实验结果表明,基于EEMD方法的降噪效果良好,在同等肌电噪声情况下,与基于EMD的自适应窗口法对比,在平均信噪比上提升1.7507,增幅约为13%;在同等基线漂移情况下,与基于EEMD的阈值法对比,在平均基线矫正率上下降0.0795,降幅约为14%。 展开更多
关键词 心电信号 集合经验模态分解 降噪 基线漂移
下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法
6
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
下载PDF
电阻抗断层成像技术的心肺信号降维集合经验模态分解方法研究
7
作者 李坤 李蔚琛 +4 位作者 郭奕彤 王伟策 王煜 闫孝姮 史学涛 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第5期539-549,共11页
心脏射血与肺通气活动信息的实时获取具有重要临床意义。本研究提出了一种基于胸部电阻抗断层成像(EIT)的心肺信号降维集合经验模态分解方法,以同时分离胸部EIT数据中的心脏射血和肺通气活动信号。招募9名志愿者进行了EIT胸部数据采集... 心脏射血与肺通气活动信息的实时获取具有重要临床意义。本研究提出了一种基于胸部电阻抗断层成像(EIT)的心肺信号降维集合经验模态分解方法,以同时分离胸部EIT数据中的心脏射血和肺通气活动信号。招募9名志愿者进行了EIT胸部数据采集。首先,根据屏息状态下胸部EIT数据中心脏活动信号的强弱对测量通道分类;随后,使用集合经验模态分解方法对自主呼吸状态下的EIT数据进行分解,并根据频谱特性对分解出的各分量归类,以得到肺通气EIT信号;然后,结合带通滤波方法,同时依据前述通道分类对心脏活动信号降维,得到心脏活动EIT信号;最后,重构得到通气相和心搏相EIT图像序列。结果表明,该方法可在通气相图像的肺区能够获得最高的肺通气功率谱峰(52.71±1.39)dB,在心搏相图像的心脏区域能够获得最高的心脏活动功率谱峰(43.05±3.26)dB,表明保留的通气信息和心脏活动信息非常丰富,同时在通气相图像心脏区域获得了最低心脏活动相关功率谱峰(10.02±2.65)dB,表明心脏活动的抑制效果更佳,相较于参考方法均有显著性差异(P<0.05)。研究表明,该方法可以有效分离肺通气与心脏活动相关信号,分别保留各自活动信息并抑制心脏对肺区成像的影响,同时实现对干扰信号的有效抑制,为临床上提供更加准确的治疗策略指导奠定基础。 展开更多
关键词 电阻抗断层成像 集合经验模态分解 心脏活动相关信号 肺通气
下载PDF
基于自适应噪声完全集合经验模态分解算法和Hurst指数的地震数据去噪方法 被引量:4
8
作者 毛世榕 史水平 +5 位作者 玉壮基 苏梅艳 李莎 何嘉 幸符 衡张清 《地震学报》 CSCD 北大核心 2023年第2期258-270,共13页
在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经... 在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经验模态分解(CEEMDAN)算法与Hurst指数相结合的地震数据去噪方法。首先通过CEEMDAN方法将信号分解为一系列本征模函数(IMF),然后利用Hurst指数对滤波后的IMF分量进行识别,最后对地震数据IMF分量进行重构,从而实现数据去噪。与传统方法的去噪效果对比表明,本文方法可将低信噪比波形的去噪效果提高32%,将高信噪比波形的去噪效果提高6倍。同时对地磁数据的去噪结果表明,本文方法能够较完整地将地铁噪声从地磁信号波形中滤除。 展开更多
关键词 地震数据去噪 地磁数据去噪 自适应噪声完全集合经验模态分解 HURST指数
下载PDF
改进的自适应噪声总体集合经验模态分解在光谱信号去噪中的应用 被引量:18
9
作者 李晓莉 李成伟 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1754-1762,共9页
针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先... 针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先,将自适应噪声的总体集合经验模态分解方法引入近红外光谱去噪过程,介绍了经验模态分解、集合经验模态分解、互补集合经验模态分解及自适应噪声总体集合经验模态分解的基本原理及具体实现过程。然后,应用基于曲率和离散弗雷歇距离的自适应噪声总体集合经验模态分解改进算法对仿真信号和光谱信号进行去噪,并将其标准差和信噪比作为评价指标。实验结果表明:应用提出的方法得到的血糖浓度近红外光谱数据其标准差为0.179 4,信噪比为19.117 5dB,实现了信号与噪声的分离,改善了重构信号质量,具有良好的自适应性,可以有效识别并提取有用信息。 展开更多
关键词 无创血糖检测 近红外光谱 信号去噪 自适应噪声总体集合经验模态分解 曲率 离散弗雷歇距离
下载PDF
基于集合经验模态分解和指数能量法的水泵水轮机尾水管压力脉动信号特征提取
10
作者 田毓龙 郑祥豪 +2 位作者 李浩 张宇宁 李金伟 《力学与实践》 2024年第2期290-297,共8页
提取水泵水轮机尾水管压力脉动信号中的动态特征信息,准确识别涡带强度,是近年来水泵水轮机工程领域的研究重点。本文基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和模态指数能量法,对某水泵水轮机发电工况不同... 提取水泵水轮机尾水管压力脉动信号中的动态特征信息,准确识别涡带强度,是近年来水泵水轮机工程领域的研究重点。本文基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和模态指数能量法,对某水泵水轮机发电工况不同负荷下的尾水管压力脉动信号进行特征提取,得到如下结论。首先,基于EEMD的模态指数能量能够有效地反映信号中的能量分布规律。其次,在涡带增强过程中,基于EEMD的最大模态指数能量不断升高,表明尾水管内的流动状况变得更加复杂,涡带特征信息也更加丰富。最后,使用最大与平均指数能量构建的特征向量能够准确反映不同的尾水管涡带强度,并且能够作为智能分类器的输入特征向量,有利于后续进一步的识别与诊断,具有重要的工程意义。 展开更多
关键词 水泵水轮机 尾水管 集合经验模态分解 指数能量 特征提取
下载PDF
一种添加部分自适应噪声的集成经验模态分解方法
11
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 白噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
基于集合经验模态分解的河北唐山井同震响应特征
12
作者 许英霞 丁俊柯 +4 位作者 马传璧 郭建芳 尹宝军 曹冲 左文喆 《地球科学与环境学报》 CAS 北大核心 2024年第2期252-268,共17页
集合经验模态分解(EEMD)能够客观真实地从非线性、非平稳信号中提取有用信息,地震观测井的井水位表征的波形信号也是典型的非线性、非平稳信号,因此,集合经验模态分解在获取井水位同震响应信息方面具有重要的应用潜力。通过观测河北唐山... 集合经验模态分解(EEMD)能够客观真实地从非线性、非平稳信号中提取有用信息,地震观测井的井水位表征的波形信号也是典型的非线性、非平稳信号,因此,集合经验模态分解在获取井水位同震响应信息方面具有重要的应用潜力。通过观测河北唐山井2016~2023年多次井水位同震响应,研究集合经验模态分解对井水位分析处理的优缺点,识别唐山井对远震、近震的井水位同震响应特征,应用地震能量密度经验公式推测唐山井记震能力。结果表明:唐山井水位观测数据秒值在经过集合经验模态分解后,对合适的高频分量进行重构可以压制噪声干扰,有利于观察井水位同震响应特征;对于远场大震引起的振荡型同震响应可以客观真实地进行识别和提取;对于近场地震引起的脉冲型和阶变型同震响应,需结合原始数据进行研究;井水位观测数据秒值有利于揭示区域应力场的变化,因观测数据秒值记震精度提高,唐山井能够记录到地震能量密度为1.77×10^(-7) J·m^(-3)的地震,观测井对不同方位地震的敏感度可用于研究其所在断裂带的裂隙走向。对于超过一定距离的远场地震,井-含水层系统能够记录到的井水位同震响应频率可在一定的范围内估算观测井的固有振动频率,唐山井固有振动频率和地震瑞丽面波频率接近。 展开更多
关键词 同震响应 唐山井 集合经验模态分解 观测数据秒值 固有频率 地震方位 裂隙走向 地震能量密度
下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
13
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
下载PDF
基于集合经验模态分解和排列熵的核电厂信号降噪研究
14
作者 王雨辰 李鼎 +1 位作者 胡玥 孙晨雨 《核科学与工程》 CAS CSCD 北大核心 2024年第1期98-107,共10页
本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实... 本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实测信号中的有用信号和噪声信号的区分。对于后者,采用改进的小波软阈值降噪法进行降噪。最后,根据排列熵筛分后的有用信号和改进的小波软阈值降噪后的噪声信号进行重构,得到降噪后的信号。另外,本文也采用了主流的经验模态分解和局部均值分解对该信号进行了处理,并将分析结果进行对比。对比结果表明,基于本文所提方法得到的降噪后信号排列熵较小,表明降噪效果要优于以上两种方法。 展开更多
关键词 信号降噪 经验模态分解 局部均值分解 集合经验模态分解 排列熵
下载PDF
基于集合经验模态分解的增强核岭回归配电系统状态估计
15
作者 张玉敏 张涌琛 +4 位作者 叶平峰 吉兴全 石春友 蔡富东 李一宸 《中国电力》 CSCD 北大核心 2024年第9期156-168,共13页
针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对... 针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对数据可靠性的要求。然后,通过构建增强核岭回归状态估计模型,建立了量测信息与估计残差之间的映射关系,输入量测信息后可以得到估计结果与估计残差。最后,在标准IEEE 33节点与某市78节点系统上进行数值仿真,结果证明了该方法在强非高斯噪声干扰下具有较高的精确性和鲁棒性。 展开更多
关键词 配电系统 状态估计 核岭回归 非高斯噪声 集合经验模态分解
下载PDF
采用集合经验模态分解和改进阈值函数的心电自适应去噪方法 被引量:24
16
作者 尹丽 陈富民 +1 位作者 张琦 陈鑫 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第1期101-107,共7页
针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采... 针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采用过零率自适应判断各IMF的噪声类别:若IMF包含高频噪声,采用结合软硬阈值优缺点所提出的改进阈值函数以去除IMF分量中的高频噪声;若IMF包含低频的基线漂移,则采用中值滤波器抑制基线漂移。最后将处理后的IMF分量叠加,即可重构去噪后的心电信号。实验结果表明,与已有的小波阈值法去噪后的信噪比(SNR)和均方根误差(RSME)对比,所提方法对心电信号去噪效果更加显著,而且能完整地保留波形特征。 展开更多
关键词 心电自适应去噪 集合经验模态分解 过零率 改进阈值函数
下载PDF
基于完全集合经验模态分解和排列熵的局部放电信号的小波包去噪方法 被引量:25
17
作者 高佳程 田蕴卿 +1 位作者 朱永利 郑艳艳 《电力系统及其自动化学报》 CSCD 北大核心 2018年第3期1-7,共7页
为有效抑制含噪局部放电信号中的干扰成分,本文采用一种基于完全集合经验模态分解和排列熵的小波包去噪方法进行局部放电信号的去噪处理。该方法在对含噪信号进行完全经验模态分解的基础上,将分解后的各模态分量依据排列熵大小排列,确... 为有效抑制含噪局部放电信号中的干扰成分,本文采用一种基于完全集合经验模态分解和排列熵的小波包去噪方法进行局部放电信号的去噪处理。该方法在对含噪信号进行完全经验模态分解的基础上,将分解后的各模态分量依据排列熵大小排列,确定出需要舍弃和进一步分解的模态分量。针对需要继续降噪处理的分量进行小波包变换,将分解后的分量信号进行重构,得到去噪后的局部放电信号。利用该方法对局部放电的仿真和实测信号进行去噪处理,并与传统的小波去噪和经验模态分解去噪方法进行对比分析。仿真和实验表明,本文所采用的方法取得了理想的去噪效果,验证了该方法的有效性,有利于局部放电信号的模式识别等进一步处理。 展开更多
关键词 局部放电 信号去噪 完全集合经验模态分解 排列熵 小波包
下载PDF
基于序关系分析法和自适应噪声完备集合经验模态分解法的直升机飞行培训安全风险评估指标权重分析 被引量:8
18
作者 许铭赫 高扬 《科学技术与工程》 北大核心 2021年第14期6089-6096,共8页
为有效管控直升机飞行培训的安全风险,依据“人-机-环-管”(man-machine-environment-management,MMEM)理论构建直升机飞行培训安全风险评估指标体系,并提出基于序关系分析法(order relation analysis method,G1)和自适应噪声完备集合... 为有效管控直升机飞行培训的安全风险,依据“人-机-环-管”(man-machine-environment-management,MMEM)理论构建直升机飞行培训安全风险评估指标体系,并提出基于序关系分析法(order relation analysis method,G1)和自适应噪声完备集合经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的权重确定方法。利用G1确定指标的主观权重,利用CEEMDAN确定指标的客观权重,然后利用最小相对信息熵原理最终确定直升机飞行培训安全风险评估指标的组合权重。以典型直升机飞行培训机构为例进行分析。结果表明不良天气对系统安全的影响最大,同时验证了该方法的简便实用,可以有效帮助机构有针对性地实施安全风险控制和管理。 展开更多
关键词 直升机飞行培训 安全风险 序关系分析法(G1) 自适应噪声完备集合经验模态分解法(CEEMDAN) 指标权重
下载PDF
基于改进互补集合经验模态分解的自适应小波熵阈值地震随机噪声压制算法 被引量:7
19
作者 孟娟 韩智明 李亚南 《科学技术与工程》 北大核心 2019年第30期52-61,共10页
针对互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)后不易有效区分有用信号和噪声的问题,以及传统小波去噪阈值选取的不足,提出基于改进CEEMD的自适应小波熵阈值地震随机噪声压制算法。将地震信号... 针对互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)后不易有效区分有用信号和噪声的问题,以及传统小波去噪阈值选取的不足,提出基于改进CEEMD的自适应小波熵阈值地震随机噪声压制算法。将地震信号进行CEEMD后,基于互信息熵和互相关系数获取高频含噪本征模态函数(intrinsic mode function,IMF);对含噪IMF进行多尺度小波分解,将高频小波系数等分为若干区间计算各区间小波熵,在此基础上得到不同尺度的自适应阈值,同时设计了改进阈值函数进行小波阈值去噪。仿真实验中,去噪残差和频谱分析表明,算法能在保留有用信号的同时有效去除随机噪声,实现保幅去噪。实际地震资料处理表明,相比其他去噪算法,算法能有效提高信噪比(signal-to-noise ratio,SNR)1 dB以上,降低均方误差(root mean square error,RMSE),具有良好的去噪能力。 展开更多
关键词 去噪 随机噪声 经验模态分解 互补集合经验模态分解 小波熵 保幅 残差分析
下载PDF
基于集合经验模态分解的局部放电信号的窄带干扰抑制 被引量:37
20
作者 姚林朋 郑文栋 +5 位作者 钱勇 杜永平 杨富民 毕杰昌 黄成军 江秀臣 《电力系统保护与控制》 EI CSCD 北大核心 2011年第22期133-139,共7页
采用经验模态分解(EMD)方法抑制局部放电的窄带干扰时,由于EMD方法本身存在模态混叠问题,在含有局放成分的模态固有函数中仍可能同时含有一定量的窄带成分,导致局放信号无法提取。分析了在局放信号上叠加不同幅值、不同频率的窄带干扰... 采用经验模态分解(EMD)方法抑制局部放电的窄带干扰时,由于EMD方法本身存在模态混叠问题,在含有局放成分的模态固有函数中仍可能同时含有一定量的窄带成分,导致局放信号无法提取。分析了在局放信号上叠加不同幅值、不同频率的窄带干扰条件下的EMD混叠现象,并提出了基于集合经验模态分解(EEMD)的解决方法。该方法对单频率成分和多频率成分的窄带干扰,均能较好地提取出局放信号。并针对EEMD引入的白噪声干扰,提出了自适应阈值的抑制方法,取得了较好的结果。仿真和现场测试的结果均验证了所提方法的有效性。 展开更多
关键词 XLPE电缆 局部放电 经验模态分解 集合模态经验分解 窄带干扰
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部