A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve ...A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.展开更多
A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two comp...A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polynomial basis-set traditionally used in finite element interpolations; namely, (i) an application of the Kelly error estimator, and (ii) a refinement based on the local potential level. When the performance of these methods are compared to standard uniform global refinement, we find that they significantly improve the total time spent in the eigensolver.展开更多
The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a...The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection.展开更多
文摘A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.
基金Developed under the Auspices of the Development Projects N N519 402837 and R15 012 03Founded by the Polish Ministry of Science and Higher Education
文摘A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polynomial basis-set traditionally used in finite element interpolations; namely, (i) an application of the Kelly error estimator, and (ii) a refinement based on the local potential level. When the performance of these methods are compared to standard uniform global refinement, we find that they significantly improve the total time spent in the eigensolver.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(51175453)supported by the National Natural Science Foundation of China
文摘The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection.