为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测...为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测模型。使用决定系数(R^(2))和预测均方误差(root mean square error of prediction,RMSEP)评价模型性能。光谱中含有大量冗余信息,为有效提升黄水淀粉含量检测精度和优化模型效率,将不同特征提取方法的优点结合,发现使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合连续投影算法(successive projections algorithm,SPA)提取的光谱特征所建立的PLSR模型,相较于未使用特征提取或仅使用单一特征提取所建立的模型均有明显提升。在单一使用CARS时,模型的R^(2)为0.9654,RMSEP为0.2012%,而结合SPA后,R2为0.9738,RMSEP为0.1748%。此外,光谱维度从2203个减少到了126个,不仅提高了预测精度,也提升了建模效率。本研究提出的方法可作为黄水近红外定量模型优化的有效途径。展开更多
面粉吸水率是评价面粉质量和预测面制品加工特性的重要品质性状。面粉吸水率的测定主要参照国际或国家标准利用粉质仪进行,其测定方法费时费力。基于此,提出利用可见近红外光谱分析技术结合多元统计分析进行面粉吸水率快速、无损检测。...面粉吸水率是评价面粉质量和预测面制品加工特性的重要品质性状。面粉吸水率的测定主要参照国际或国家标准利用粉质仪进行,其测定方法费时费力。基于此,提出利用可见近红外光谱分析技术结合多元统计分析进行面粉吸水率快速、无损检测。参照国标法测定150份小麦面粉样品的吸水率,面粉吸水率变幅为53.10%~74.50%。利用可见近红外分析仪采集面粉样品的光谱信息,有效光谱范围为570~1100 nm。采用偏最小二乘回归(PLSR)、主成分回归(PCR)和支持向量机回归(SVR)将光谱信息和面粉吸水率进行关联,分别建立面粉吸水率的定量分析预测模型,筛选最优的建模方法。在优选的建模方法的基础上,采用竞争性自适应重加权(CARS)、区间随机蛙跳(iRF)、迭代保留信息变量(IRIV)和连续投影(SPA)算法提取特征波长,筛选最优的特征波长提取算法。基于最优的建模方法和最优的特征波长提取算法提取的特征波长,采用标准化(NL)、一阶求导(1 st Der)、基线校正(BL)、标准正态变换(SNV)和去趋势化(DT)5种光谱预处理方法对特征波长的光谱进行预处理,筛选最优的光谱预处理方法。结果表明,采用NL光谱预处理方法对CARS算法提取的24个特征波长(仅占原始波长的2.26%)的光谱进行预处理后建立的PLSR模型性能最佳,预测集相关系数(R_(p)^(2))、预测集均方根误差(RMSEP)和预测相对分析误差(RPD)分别为0.8894、1.4585和2.6413。采用CARS算法提取的特征波长所建的模型不仅能提高模型的性能,还很大程度提高模型运算效率、降低仪器制造成本和光谱仪微型化的难度,从而为面粉吸水率可见近红外无损、快速检测研究奠定了基础。展开更多
文摘为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测模型。使用决定系数(R^(2))和预测均方误差(root mean square error of prediction,RMSEP)评价模型性能。光谱中含有大量冗余信息,为有效提升黄水淀粉含量检测精度和优化模型效率,将不同特征提取方法的优点结合,发现使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合连续投影算法(successive projections algorithm,SPA)提取的光谱特征所建立的PLSR模型,相较于未使用特征提取或仅使用单一特征提取所建立的模型均有明显提升。在单一使用CARS时,模型的R^(2)为0.9654,RMSEP为0.2012%,而结合SPA后,R2为0.9738,RMSEP为0.1748%。此外,光谱维度从2203个减少到了126个,不仅提高了预测精度,也提升了建模效率。本研究提出的方法可作为黄水近红外定量模型优化的有效途径。
文摘面粉吸水率是评价面粉质量和预测面制品加工特性的重要品质性状。面粉吸水率的测定主要参照国际或国家标准利用粉质仪进行,其测定方法费时费力。基于此,提出利用可见近红外光谱分析技术结合多元统计分析进行面粉吸水率快速、无损检测。参照国标法测定150份小麦面粉样品的吸水率,面粉吸水率变幅为53.10%~74.50%。利用可见近红外分析仪采集面粉样品的光谱信息,有效光谱范围为570~1100 nm。采用偏最小二乘回归(PLSR)、主成分回归(PCR)和支持向量机回归(SVR)将光谱信息和面粉吸水率进行关联,分别建立面粉吸水率的定量分析预测模型,筛选最优的建模方法。在优选的建模方法的基础上,采用竞争性自适应重加权(CARS)、区间随机蛙跳(iRF)、迭代保留信息变量(IRIV)和连续投影(SPA)算法提取特征波长,筛选最优的特征波长提取算法。基于最优的建模方法和最优的特征波长提取算法提取的特征波长,采用标准化(NL)、一阶求导(1 st Der)、基线校正(BL)、标准正态变换(SNV)和去趋势化(DT)5种光谱预处理方法对特征波长的光谱进行预处理,筛选最优的光谱预处理方法。结果表明,采用NL光谱预处理方法对CARS算法提取的24个特征波长(仅占原始波长的2.26%)的光谱进行预处理后建立的PLSR模型性能最佳,预测集相关系数(R_(p)^(2))、预测集均方根误差(RMSEP)和预测相对分析误差(RPD)分别为0.8894、1.4585和2.6413。采用CARS算法提取的特征波长所建的模型不仅能提高模型的性能,还很大程度提高模型运算效率、降低仪器制造成本和光谱仪微型化的难度,从而为面粉吸水率可见近红外无损、快速检测研究奠定了基础。