期刊文献+
共找到3,364篇文章
< 1 2 169 >
每页显示 20 50 100
基于自适应径向基神经网络的类星体光谱自动识别方法 被引量:6
1
作者 赵梅芳 罗阿理 +1 位作者 吴福朝 胡占义 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第2期377-381,共5页
通过对光谱的研究来识别和认证类星体是天文学研究中的重要方法。文章提出了一种对类星体光谱进行自动识别的自适应径向基神经网络(RBFN)方法。该方法包括以下几个步骤:(1)先将训练样本归一化,再利用PCA变换进行降维,获得样本特征向量;... 通过对光谱的研究来识别和认证类星体是天文学研究中的重要方法。文章提出了一种对类星体光谱进行自动识别的自适应径向基神经网络(RBFN)方法。该方法包括以下几个步骤:(1)先将训练样本归一化,再利用PCA变换进行降维,获得样本特征向量;(2)设计出K均值聚类算法与梯度下降法相结合的径向基神经网络结构的基本模型,再用SSE(sum of squares error)误差函数进行判断,对RBFN隐含层的神经元进行自动调节,直至满足给定误差阈值;(3)用训练得到的参数对用于测试的样本中的类星体光谱进行识别。该方法不但克服了经典RBFN算法选择隐层神经元数目的困难,而且还提高了对类星体识别的稳定性和正确率。研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。 展开更多
关键词 星系 类星体 主分量分析 径向神经网络 K均值聚类 梯度下降
下载PDF
品位估值的自适应径向基神经网络构建技术 被引量:3
2
作者 贾明涛 叶加冕 +1 位作者 寇向宇 王李管 《煤炭学报》 EI CAS CSCD 北大核心 2010年第9期1524-1530,共7页
在简要分析常用储量计算方法与BP神经网络预测方法存在缺陷的基础上,分析了径向基神经网络隐层节点参数在映射机理上与地质统计学方法理论上的一致性,以及其权系数能解析方式求解、可避免网络训练过程陷入局部最优乃至不收敛现象的特征... 在简要分析常用储量计算方法与BP神经网络预测方法存在缺陷的基础上,分析了径向基神经网络隐层节点参数在映射机理上与地质统计学方法理论上的一致性,以及其权系数能解析方式求解、可避免网络训练过程陷入局部最优乃至不收敛现象的特征,提出了构建径向基函数神经网络进行矿床品位估值模型的研究思路。通过多方案分析,得出了待估点三维坐标及周围样品点个数是影响径向基函数神经网络模型估值精度的主要因素,给出了输入节点变量空间的基本配置方式——3个坐标加周边8个样品点品位。针对实际工程中样品空间较大的特征,分析了隐层中心、宽度等参数需根据输入变量自适应构造的必要性,以及利用正则化正交最小二乘的前向选择法的可行性。利用开发的具备用户自定义和交互式输入参数的计算机软件,构造了两种不同的品位估计模型。验证试验表明:基于样本空间自适应构建的径向基函数神经网络,建模速度快、可靠性强,平均估值误差最大为3.09%,且正则化参数对模型的估值精度影响较大,考虑了该参数的模型估值效果更好。 展开更多
关键词 品位估值 自适应建模 径向函数神经网络 正则化参数
下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:1
3
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向函数神经网络 粒子群优化算法 参数预测
下载PDF
基于权重自适应更新径向基函数神经网络的水下游动机械臂镇定控制 被引量:2
4
作者 孙非 曹宇赫 +1 位作者 崔特 任超 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期1-8,共8页
水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑... 水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑战。针对这一问题,本文基于反馈线性化和自适应径向基函数神经网络(radial basis function neural network,RBFNN),设计了一种动力学控制方案以实现USM的镇定控制。首先,介绍了USM平台结构,基于Lagrange方程给出了USM的动力学模型,并推导了USM的矢量推力系统模型。然后,设计了基于反馈线性化和RBFNN的动力学控制器,并通过反步法自适应更新RBFNN的权重。其中,权重自适应更新RBFNN用于实时估计系统未建模部分、参数误差以及外部扰动,从而对动力学控制器进行补偿。此外,为了将动力学控制器提供的广义力和力矩转换成各个执行器的控制输入,给出了推力分配策略。最后,进行了湖泊实验,分别对USM的I构型和C构型镇定控制,文章所提出的控制方案在两种构型下的稳态误差均小于0.08 m和10°,验证了所提出的USM六自由度镇定控制器的有效性。 展开更多
关键词 水下游动机械臂 动力学建模 反馈线性化 径向函数神经网络
下载PDF
基于神经网络的船测稀疏海域地形反演改进算法
5
作者 欧阳明达 翟振和 +3 位作者 牛向华 管斌 张鹏飞 付永健 《中国惯性技术学报》 北大核心 2025年第1期64-69,共6页
针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,... 针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,所建立神经网络模型用于长波重力异常格网构建,达到提高地形反演精度的目的。为验证改进算法有效性,设计7种不同组合模式,将南中国海某海域作为研究对象,对比形成最优方案,结果表明,在船测稀疏海域,改进方案相比重力地质法反演精度提高40%以上。 展开更多
关键词 重力地质法 径向函数神经网络算法 重力异常 海底地形
下载PDF
基于自适应扰动观测器的旋转弹神经网络过载驾驶仪设计
6
作者 王伟 杨婧 +2 位作者 南宇翔 李俊辉 王雨辰 《兵工学报》 EI CAS CSCD 北大核心 2024年第11期3841-3855,共15页
旋转弹在飞行过程中受多种干扰的影响,包括跨域飞行气动参数剧烈变化引起的模型不确定性以及飞行过程中受到的外部扰动。为了解决高动态飞行环境中双通道旋转弹的鲁棒控制问题,基于轨迹线性化控制方法,设计伪逆反馈控制器。采用径向基... 旋转弹在飞行过程中受多种干扰的影响,包括跨域飞行气动参数剧烈变化引起的模型不确定性以及飞行过程中受到的外部扰动。为了解决高动态飞行环境中双通道旋转弹的鲁棒控制问题,基于轨迹线性化控制方法,设计伪逆反馈控制器。采用径向基函数神经网络,设计自适应前馈补偿控制器,有效实现对模型不确定性的精确逼近。将神经网络逼近误差和外部扰动处理为总扰动,并基于固定时间稳定理论设计一种自适应扰动观测器,实现对总扰动的精确估计及补偿。通过Lyapunov理论,严格证明了闭环系统的最终一致有界性。通过数值仿真验证了所设计方法的有效性。 展开更多
关键词 旋转弹 双通道控制 径向函数神经网络 自适应扰动观测器 固定时间稳定理论
下载PDF
基于径向基函数神经网络算法的高频转阀阀芯稳定性
7
作者 薛召 陈泽吉 +1 位作者 贾文昂 白继平 《液压与气动》 北大核心 2024年第9期98-107,共10页
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLA... 针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证。结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%。径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度。 展开更多
关键词 径向函数神经网络算法 高频转阀 液压马达 转速控制
下载PDF
基于小波包分解的TCN-RBF神经网络模型在桥梁沉降预测中的应用
8
作者 吴昌程 《北京测绘》 2025年第1期105-110,共6页
静荷载与动荷载在沉降监测数据中表现出不同的特性,直接对非线性、非平稳性沉降监测数据进行预测,无法体现沉降监测数据的不同特性,限制了预测精度。因此,本文引入小波包分解方法,对沉降监测数据进行自适应分解与重构。对于低频重构结果... 静荷载与动荷载在沉降监测数据中表现出不同的特性,直接对非线性、非平稳性沉降监测数据进行预测,无法体现沉降监测数据的不同特性,限制了预测精度。因此,本文引入小波包分解方法,对沉降监测数据进行自适应分解与重构。对于低频重构结果,使用趋势性预测能力较强的时域卷积神经网络(TCN)模型进行训练与预测;对于高频重构结果,使用规律性预测能力较强的径向基函数(RBF)神经网络模型进行训练与预测,重构不同频段预测结果得到最终预测结果。使用苏通大桥实测静力水准数据进行实验,结果表明,本文模型较对比模型预测精度更高,验证了本文模型的有效性。 展开更多
关键词 小波包分解 径向函数(RBF)神经网络 时域卷积神经网络(TCN) 桥梁沉降预测 精度验证
下载PDF
基于径向基神经网络的尾门优化研究
9
作者 黄晖 陈为欢 熊伟 《机电信息》 2024年第20期71-73,77,共4页
某一新车尾门悬挂重达35 kg备胎,需满足下垂性能指标及轻量化需求,针对传统人工迭代优化周期长、难度大的问题,提出一种基于径向基神经网络(RBF)的尾门优化方法,首先将尾门结构参数和料厚定义为可优化设计变量,然后通过试验设计(DOE)生... 某一新车尾门悬挂重达35 kg备胎,需满足下垂性能指标及轻量化需求,针对传统人工迭代优化周期长、难度大的问题,提出一种基于径向基神经网络(RBF)的尾门优化方法,首先将尾门结构参数和料厚定义为可优化设计变量,然后通过试验设计(DOE)生成不同设计变量与车门下垂性能对应关系的多组数据,再基于RBF建立结构参数和性能的非线性映射,最后基于Isight的遗传算法对尾门参数进行优化。结果表明,优化方案尾门满足下垂下坠性能,并且减重1.0 kg(3.7%)。该研究对尾门优化设计有较大的工程参考价值。 展开更多
关键词 尾门 优化 径向神经网络 试验设计 遗传算法
下载PDF
基于多变量相空间重构和径向基函数神经网络的综合能源系统电冷热超短期负荷预测 被引量:5
10
作者 窦真兰 张春雁 +2 位作者 许一洲 高煜焜 刘皓明 《电网技术》 EI CSCD 北大核心 2024年第1期121-128,共8页
为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦... 为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。 展开更多
关键词 电冷热负荷预测 综合能源系统 多变量相空间重构 径向函数神经网络
下载PDF
基于分数阶自适应神经网络的电动舵机伺服系统摩擦干扰补偿控制
11
作者 陈渝丰 徐晓璐 +3 位作者 张金鹏 张昆峰 岳强 张文静 《航空兵器》 CSCD 北大核心 2024年第1期133-140,共8页
摩擦干扰力矩影响电动舵机伺服系统的跟踪性能,造成位置和速度跟踪偏差,甚至可能导致伺服系统不稳定。针对摩擦力矩干扰下的电动舵机伺服系统跟踪性能差的问题,本文提出了一种分数阶自适应神经网络摩擦补偿算法(FOANN),估计并补偿摩擦... 摩擦干扰力矩影响电动舵机伺服系统的跟踪性能,造成位置和速度跟踪偏差,甚至可能导致伺服系统不稳定。针对摩擦力矩干扰下的电动舵机伺服系统跟踪性能差的问题,本文提出了一种分数阶自适应神经网络摩擦补偿算法(FOANN),估计并补偿摩擦干扰力矩。首先,建立基于LuGre模型的电动舵机伺服系统模型,利用径向基神经网络估计模型中的不可测状态变量。其次,设计FOANN摩擦补偿控制器,利用李雅普诺夫稳定性理论证明电动舵机闭环系统的稳定性。最后,利用仿真和实验平台,对比分析了FOANN、传统PD控制和模型自适应控制的性能。结果表明,基于本文所提出的FOANN摩擦力矩补偿控制算法,电动舵机伺服系统的位置跟踪误差和速度跟踪误差均大幅减小,FOANN算法能够有效估计并补偿摩擦力矩,降低摩擦干扰对电机舵机伺服系统的影响,提高伺服系统的动态性能。 展开更多
关键词 电动舵机 摩擦 LUGRE模型 分数阶控制 自适应控制 径向神经网络
下载PDF
基于递归径向基神经网络滑模的多功能柔性多状态开关控制方法 被引量:1
12
作者 廖江华 高伟 +1 位作者 唐钧益 杨耿杰 《电气技术》 2024年第5期11-21,共11页
近年来,新能源和电动汽车的渗透比例逐渐增高,给配电网的潮流优化和电能质量治理带来严峻挑战。针对分布式电源的随机性和间歇性问题,设计一种基于递归径向基神经网络(RRBFNN)滑模的多功能柔性多状态开关(FMS)控制方法,在实现功率交互... 近年来,新能源和电动汽车的渗透比例逐渐增高,给配电网的潮流优化和电能质量治理带来严峻挑战。针对分布式电源的随机性和间歇性问题,设计一种基于递归径向基神经网络(RRBFNN)滑模的多功能柔性多状态开关(FMS)控制方法,在实现功率交互和多端单相接地故障柔性消弧的同时,增强FMS的抗扰能力。首先考虑扰动的影响,设计一种改进RRBFNN滑模控制方法,以克服传统滑模控制固有的抖振现象和对系统精确数学模型的依赖,并减小并网暂态冲击;柔性消弧控制采用微积分型滑模面,理论推导出0轴电压控制律,提高故障电流抑制率;进一步通过李雅普诺夫定理证明所设计方法的稳定性和收敛性。最后,在Matlab/Simulink中搭建三端口FMS及其控制系统的仿真模型,通过对比仿真验证了所提策略的可行性和有效性。 展开更多
关键词 配电网 柔性多状态开关(FMS) 单相接地故障 柔性消弧 径向神经网络(RBFNN) 滑模控制
下载PDF
基于径向基神经网络预测日参考作物需水量
13
作者 孟玮 孙西欢 +1 位作者 郭向红 马娟娟 《人民黄河》 CAS 北大核心 2024年第4期117-120,共4页
为了利用有限的气象数据准确预测蓄水坑灌果园的日参考作物需水量,利用蓄水坑灌试验基地逐日温度与湿度数据,构建了基于径向基神经网络的ET0预测模型,并将其模拟结果及Hargreaves、Priestley-Taylor两种常用ET0计算模型的计算结果同FAO-... 为了利用有限的气象数据准确预测蓄水坑灌果园的日参考作物需水量,利用蓄水坑灌试验基地逐日温度与湿度数据,构建了基于径向基神经网络的ET0预测模型,并将其模拟结果及Hargreaves、Priestley-Taylor两种常用ET0计算模型的计算结果同FAO-56 Penman-Monteith(FAO56-PM)公式计算的标准值进行对比。结果表明:径向基神经网络预测模型的模拟结果与标准方法FAO56-PM公式的计算结果最接近,而Hargreaves、Priestley-Taylor两个常用计算模型的计算结果比标准值偏大,在实际应用中应对其进行校正。 展开更多
关键词 蓄水坑灌 日参考作物需水量 径向神经网络 Hargreaves公式 Priestley-Taylor公式
下载PDF
基于粗糙径向基神经网络的刮板输送机负载预测方法研究 被引量:4
14
作者 郭刚 汪海涛 +2 位作者 高晓成 闫尚彬 黄晓俊 《煤炭工程》 北大核心 2024年第2期138-145,共8页
刮板输送机负载的准确预测对实现采煤机和刮板输送机的协同控制至关重要。刮板输送机短期负载受工作面环境、冲击载荷等不确定性因素的影响,具有很强的非线性和非平稳性,难以准确预测。针对此问题,本研究提出一种基于粗糙径向基神经网... 刮板输送机负载的准确预测对实现采煤机和刮板输送机的协同控制至关重要。刮板输送机短期负载受工作面环境、冲击载荷等不确定性因素的影响,具有很强的非线性和非平稳性,难以准确预测。针对此问题,本研究提出一种基于粗糙径向基神经网络的刮板输送机负载预测方法。该方法首先建立刮板输送机电流去噪模型,得到反映综采工作面刮板输送机真实负载的电流分量;然后针对刮板输送机负载电流波动大导致的神经网络预测模型训练误差增大、预测精度低的问题,引入表征负载变化波动的上下输入粗糙神经元,提出一种粗糙径向基神经网络(RRBFNN)模型;最后基于粗糙径向基神经网络建立刮板输送机短期负载预测模型,并进行仿真实验验证。结果表明:本研究提出的RRBFNN刮板输送机短期负载预测模型,比传统RBF模型的平均绝对误差(MAE)、平均绝对百分误差(MAPE)和均方根误差(RMSE)分别降低26.22%,25.39%和14.72%,该方法能有效提高刮板输送机负载的预测精度。 展开更多
关键词 刮板输送机 负载预测 粗糙神经 径向神经网络
下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
15
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
下载PDF
基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法 被引量:71
16
作者 雷绍兰 孙才新 +2 位作者 周湶 张晓星 程其云 《中国电机工程学报》 EI CSCD 北大核心 2005年第22期78-82,共5页
针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用A... 针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用ANFIS系统对RBF神经网络的负荷预测结果进行修正,以使固定电价时代的预测方法在电价敏感环境下也能达到较好的预测精度,克服了神经网络在电力市场下进行负荷预测时存在的不足。某电网实际预测结果表明,该方法具有较好的预测效果。 展开更多
关键词 电力系统 短期负荷预测 实时电价 径向神经网络 自适应神经模糊系统
下载PDF
基于自适应径向基函数神经网络的无刷直流电机直接电流控制 被引量:52
17
作者 夏长亮 王娟 +3 位作者 史婷娜 陈炜 徐绍辉 杨荣 《中国电机工程学报》 EI CSCD 北大核心 2003年第6期123-127,共5页
提出了基于自适应径向基函数(Radial Basis Function)神经网络的无刷直流电机直接电流控制新方法。该方法构造了一个隐层节点初始个数为零的RBF网络,通过在训练过程中不断地按照自适应算法添加和删除隐层单元, 形成 一个结构简单、紧凑... 提出了基于自适应径向基函数(Radial Basis Function)神经网络的无刷直流电机直接电流控制新方法。该方法构造了一个隐层节点初始个数为零的RBF网络,通过在训练过程中不断地按照自适应算法添加和删除隐层单元, 形成 一个结构简单、紧凑的RBF网络来实现电机电压、电流与功率开关导通信号之间的非线性映射,直接控制功率开关的通断,实现无位置传感器的直接电流控制。网络训练采用离线训练和在线训练相结合的方法。首先利用来自实验数据的训练样本按给出的自适应算法对网络进行离线训练,确定RBF网络隐层节点的个数及位置;再按递推最小二乘法(RLS)在线修正隐层与输出层之间的连接权;最后,用数字处理器(DSP)实现在线控制算法。实验结果表明,该控制方法具有较高的鲁棒性和控制精度。 展开更多
关键词 无刷直流电机 直接电流控制 自适应径向函数 神经网络 无位置传感器
下载PDF
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
18
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向函数神经网络 自适应粒子群优化 量子比特 流量预测
下载PDF
基于径向基神经网络的不确定非线性系统的鲁棒自适应控制 被引量:6
19
作者 武国庆 姜长生 +1 位作者 张锐 卢伟健 《航空学报》 EI CAS CSCD 北大核心 2002年第6期530-533,共4页
针对能够采用仿射非线性表示的含有不确定动态的非线性系统 ,提出了一种鲁棒自适应控制方法 ,该方法根据离线辨识出的受控对象的已知部分 ,采用神经网络在线辨识其未知部分 ,并针对辨识得到神经网络模型采用反馈线性化方法设计出自适应... 针对能够采用仿射非线性表示的含有不确定动态的非线性系统 ,提出了一种鲁棒自适应控制方法 ,该方法根据离线辨识出的受控对象的已知部分 ,采用神经网络在线辨识其未知部分 ,并针对辨识得到神经网络模型采用反馈线性化方法设计出自适应控制器 ,同时引入滑模控制方法以增强控制系统的鲁棒性 ,从而实现鲁棒自适应控制。通过对具有未建模动态的非线性直升机空气动力学模型 ,设计了总距通道系统。 展开更多
关键词 径向神经网络 不确定非线性系统 自适应控制 滑模控制 鲁棒性
下载PDF
自适应变系数粒子群—径向基神经网络模型在负荷预测中的应用 被引量:5
20
作者 师彪 李郁侠 +3 位作者 于新花 李娜 闫旺 孟欣 《计算机应用》 CSCD 北大核心 2009年第9期2454-2458,共5页
为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群—径向基函数神经网络混合优化算法(AVCTPO-RBF)。实现了径向基神经网络参数优化。建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测。仿真表... 为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群—径向基函数神经网络混合优化算法(AVCTPO-RBF)。实现了径向基神经网络参数优化。建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测。仿真表明,该方法的收敛速度和预测精度优于传统径向基神经网络方法和粒子群—RBF神经网络方法及基于混沌理论的神经网络模型,该优化算法克服了径向基神经网络和传统的粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,提高了贵州电网短期负荷预测的精度,各日预测负荷的平均百分比误差可控制在1.7%以内。该算法可有效用于电力系统的短期负荷预测。 展开更多
关键词 短期负荷预测 自适应变系数粒子群 泛化能力 径向神经网络
下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部