期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于APIT-SA-MEMD和FLLE的齿轮故障识别
1
作者 冀浩非 刘慧玲 董加强 《机械传动》 北大核心 2022年第11期161-169,共9页
齿轮往往处于恶劣的工作环境,其振动信号具有非线性和非平稳性的特点,研究出适用于齿轮的故障诊断方法具有重要意义。针对这一问题,提出了一种基于自适应投影本质变换正弦辅助多元经验模式分解(APIT-SA-MEMD)和Floyd局部线性嵌入算法(FL... 齿轮往往处于恶劣的工作环境,其振动信号具有非线性和非平稳性的特点,研究出适用于齿轮的故障诊断方法具有重要意义。针对这一问题,提出了一种基于自适应投影本质变换正弦辅助多元经验模式分解(APIT-SA-MEMD)和Floyd局部线性嵌入算法(FLLE)的智能故障诊断方法。自适应投影本质变换多元经验模式分解存在模态混叠现象,因此,提出自适应投影本质变换正弦辅助多元经验模式分解来减轻传统经验模式分解存在的模态混叠现象。首先,采用APIT-SA-MEMD方法对齿轮振动信号进行分解,获得能够表征齿轮振动信号的IMF分量;在此基础上,提取所选取IMF分量的时域和频域特征,获得高维特征矩阵;最后,利用FLLE对高维特征矩阵进行降维和聚类分析,实现齿轮故障模式的识别。实验结果表明,提出的方法能够准确识别齿轮的不同故障类型。 展开更多
关键词 齿轮 自适应投影本质变换正弦辅助多元经验模式分解 Floyd局部线性嵌入 降维故障识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部