期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
演化信息协助的动态协同随机漂移粒子群优化算法 被引量:1
1
作者 赵吉 程成 《计算机应用》 CSCD 北大核心 2020年第11期3119-3126,共8页
为了改善随机漂移粒子群算法的群体多样性,通过演化信息的协助,提出动态协同随机漂移粒子群优化(CRDPSO)算法。利用上下文粒子的向量信息,粒子之间的动态协作增加了种群多样性,这有助于提高群体的搜索能力,并使整个群体协同搜索全局最... 为了改善随机漂移粒子群算法的群体多样性,通过演化信息的协助,提出动态协同随机漂移粒子群优化(CRDPSO)算法。利用上下文粒子的向量信息,粒子之间的动态协作增加了种群多样性,这有助于提高群体的搜索能力,并使整个群体协同搜索全局最优值。同时在演化过程中的每次迭代,利用二维空间分割树结构来存储算法中的估计解的位置和适应度值,从而实现快速适应度函数逼近。由于适应度函数逼近增强了变异策略,因此变异是自适应且无参数的。通过典型测试函数将CRDPSO算法和差分进化算法(DE)、协方差矩阵适应进化策略算法(CMA-ES)、非重复访问遗传算法(cNrGA)以及三种改进的量子行为粒子群算法(QPSO)进行比较。实验结果表明,不管是对于单峰还是多峰测试函数,CRDPSO的性能均是最优的,证明了该算法的有效性。 展开更多
关键词 群体智能 动态协同进化 演化信息 自适应无参变异 二维空间分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部