Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sen...Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.展开更多
Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss...Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.展开更多
文摘Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No. 10472006)
文摘Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.