该文研究孤岛交流微电网二次电压和频率的固定时间精确控制问题,基于多智能体一致性方法,提出考虑状态受限的自适应模糊固定时间二次电压控制器和基于控制障碍函数的二次频率控制器。在多智能体一致性控制中,将每一个分布式电源视为一...该文研究孤岛交流微电网二次电压和频率的固定时间精确控制问题,基于多智能体一致性方法,提出考虑状态受限的自适应模糊固定时间二次电压控制器和基于控制障碍函数的二次频率控制器。在多智能体一致性控制中,将每一个分布式电源视为一个非线性智能体,智能体之间通过稀疏网络进行通信。在电压控制器设计中,采用反馈线性化后未知变量的自适应模糊估计提高控制器的自适应能力,并引入新的滑模面使电压控制器在固定时间内收敛。考虑到系统状态受限问题,分别采用障碍Lyapunov函数和控制障碍函数设计电压与频率控制器,使系统状态在预设的约束范围内。频率控制器的设计还考虑了有功功率的精确分配问题,给出了严格的固定时间收敛及稳定性证明。在Matlab/Sim Power System环境下,对微电网负载变化及大干扰下的仿真验证了所提控制器的有效性。展开更多
Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distilla...Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.展开更多
文摘该文研究孤岛交流微电网二次电压和频率的固定时间精确控制问题,基于多智能体一致性方法,提出考虑状态受限的自适应模糊固定时间二次电压控制器和基于控制障碍函数的二次频率控制器。在多智能体一致性控制中,将每一个分布式电源视为一个非线性智能体,智能体之间通过稀疏网络进行通信。在电压控制器设计中,采用反馈线性化后未知变量的自适应模糊估计提高控制器的自适应能力,并引入新的滑模面使电压控制器在固定时间内收敛。考虑到系统状态受限问题,分别采用障碍Lyapunov函数和控制障碍函数设计电压与频率控制器,使系统状态在预设的约束范围内。频率控制器的设计还考虑了有功功率的精确分配问题,给出了严格的固定时间收敛及稳定性证明。在Matlab/Sim Power System环境下,对微电网负载变化及大干扰下的仿真验证了所提控制器的有效性。
文摘Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.