针对常规最大类间方差法在多阈值图像分割中存在的运算量大、计算时间长、分割精度较低等问题,该文提出一种基于改进的自适应差分演化(JADE)算法的2维Otsu多阈值分割法。首先,为增强初始化种群的质量、提升控制参数的适应性,将混沌映射...针对常规最大类间方差法在多阈值图像分割中存在的运算量大、计算时间长、分割精度较低等问题,该文提出一种基于改进的自适应差分演化(JADE)算法的2维Otsu多阈值分割法。首先,为增强初始化种群的质量、提升控制参数的适应性,将混沌映射机制融入到JADE算法中;进而,通过该改进算法求解2维Otsu多阈值图像的最佳分割阈值;最终,将该算法与差分进化(DE), JADE,改进正弦参数自适应的差分进化(LSHADE-cn Ep Sin)以及增强的适应性微分变换差分进化(EFADE) 4种算法的2维Otsu多阈值图像分割进行比较。实验结果表明,与其它4种算法相比,基于改进JADE算法的2维Otsu多阈值图像分割在分割速度以及精度上均有较明显的改善。展开更多
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
文摘针对常规最大类间方差法在多阈值图像分割中存在的运算量大、计算时间长、分割精度较低等问题,该文提出一种基于改进的自适应差分演化(JADE)算法的2维Otsu多阈值分割法。首先,为增强初始化种群的质量、提升控制参数的适应性,将混沌映射机制融入到JADE算法中;进而,通过该改进算法求解2维Otsu多阈值图像的最佳分割阈值;最终,将该算法与差分进化(DE), JADE,改进正弦参数自适应的差分进化(LSHADE-cn Ep Sin)以及增强的适应性微分变换差分进化(EFADE) 4种算法的2维Otsu多阈值图像分割进行比较。实验结果表明,与其它4种算法相比,基于改进JADE算法的2维Otsu多阈值图像分割在分割速度以及精度上均有较明显的改善。
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.