期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于transformer自适应特征向量融合的图像分类
被引量:
1
1
作者
胡义
黄勃淳
李凡
《光电子.激光》
CAS
CSCD
北大核心
2023年第6期602-609,共8页
针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利...
针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利用最大池化来去除特征中的冗余信息,从而使提取的特征更具有判别性。此外,为了充分利用图像的各级特征信息来进行分类预测,本文将网络各阶段产生的特征向量进行融合,使融合后的特征向量更具有表征能力,从而减少网络对大数据集的依赖,使网络在小数据集中也能获得很好的性能。实验表明,本文提出的算法在数据集Mini-ImageNet-100、CIFAR-100和ImageNet-1k上的TOP-1准确率分别达到了74.22%、85.86%和81.4%。在没有增加计算量的情况下,在baseline上分别提高了6.0%、3.0%和0.1%,且参数量减少了18.3%。本文代码开源在“https://github.com/xhutongxue/afvf”。
展开更多
关键词
TRANSFORMER
图像分类
自适应特征向量融合
卷积神经网络(CNN)
模式识别
原文传递
题名
基于transformer自适应特征向量融合的图像分类
被引量:
1
1
作者
胡义
黄勃淳
李凡
机构
昆明理工大学信息工程与自动化学院
出处
《光电子.激光》
CAS
CSCD
北大核心
2023年第6期602-609,共8页
基金
国家自然科学基金(61862036,61962030,81860318)资助项目。
文摘
针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利用最大池化来去除特征中的冗余信息,从而使提取的特征更具有判别性。此外,为了充分利用图像的各级特征信息来进行分类预测,本文将网络各阶段产生的特征向量进行融合,使融合后的特征向量更具有表征能力,从而减少网络对大数据集的依赖,使网络在小数据集中也能获得很好的性能。实验表明,本文提出的算法在数据集Mini-ImageNet-100、CIFAR-100和ImageNet-1k上的TOP-1准确率分别达到了74.22%、85.86%和81.4%。在没有增加计算量的情况下,在baseline上分别提高了6.0%、3.0%和0.1%,且参数量减少了18.3%。本文代码开源在“https://github.com/xhutongxue/afvf”。
关键词
TRANSFORMER
图像分类
自适应特征向量融合
卷积神经网络(CNN)
模式识别
Keywords
transformer
image classification
adaptive feature vector fusion
convolutional neural net-work(CNN)
pattern recognition
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于transformer自适应特征向量融合的图像分类
胡义
黄勃淳
李凡
《光电子.激光》
CAS
CSCD
北大核心
2023
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部