期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于transformer自适应特征向量融合的图像分类 被引量:1
1
作者 胡义 黄勃淳 李凡 《光电子.激光》 CAS CSCD 北大核心 2023年第6期602-609,共8页
针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利... 针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利用最大池化来去除特征中的冗余信息,从而使提取的特征更具有判别性。此外,为了充分利用图像的各级特征信息来进行分类预测,本文将网络各阶段产生的特征向量进行融合,使融合后的特征向量更具有表征能力,从而减少网络对大数据集的依赖,使网络在小数据集中也能获得很好的性能。实验表明,本文提出的算法在数据集Mini-ImageNet-100、CIFAR-100和ImageNet-1k上的TOP-1准确率分别达到了74.22%、85.86%和81.4%。在没有增加计算量的情况下,在baseline上分别提高了6.0%、3.0%和0.1%,且参数量减少了18.3%。本文代码开源在“https://github.com/xhutongxue/afvf”。 展开更多
关键词 TRANSFORMER 图像分类 自适应特征向量融合 卷积神经网络(CNN) 模式识别
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部