A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two comp...A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polynomial basis-set traditionally used in finite element interpolations; namely, (i) an application of the Kelly error estimator, and (ii) a refinement based on the local potential level. When the performance of these methods are compared to standard uniform global refinement, we find that they significantly improve the total time spent in the eigensolver.展开更多
基金Developed under the Auspices of the Development Projects N N519 402837 and R15 012 03Founded by the Polish Ministry of Science and Higher Education
文摘A Schrodinger eigenvalue problem is solved for the 219 quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polynomial basis-set traditionally used in finite element interpolations; namely, (i) an application of the Kelly error estimator, and (ii) a refinement based on the local potential level. When the performance of these methods are compared to standard uniform global refinement, we find that they significantly improve the total time spent in the eigensolver.