Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method...Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.展开更多
We propose a new robust optimization approach to evaluate the impact of an intermittent renewable energy source on transmission expansion planning (TEP). The objective function of TEP is composed of the investment c...We propose a new robust optimization approach to evaluate the impact of an intermittent renewable energy source on transmission expansion planning (TEP). The objective function of TEP is composed of the investment cost of the transmission line and the operating cost of conventional generators. A method to select suitable scenarios representing the intermittent renewable energy generation and loads is proposed to obtain robust expansion planning for all possible scenarios. A meta-heuristic algorithm called adaptive tabu search (ATS) is employed in the proposed TEE ATS iterates between the main problem, which minimizes the investment and operating costs, and the subproblem, which minimizes the cost of power generation from conventional generators and curtailments of renewable energy generation and loads. The subproblem is solved by nonlinear programming (NLP) based on an interior point method. Moreover, the impact of an intermittent renewable energy source on TEP was evaluated by comparing expansion planning with and without consideration of a renewable energy source. The IEEE Reliability Test System 79 (RTS 79) was used for testing the proposed method and evaluating the impact of an intermittent renewable energy source on TEP. The results show that the proposed robust optimization approach provides a more robust solution than other methods and that the impact of an intermittent renewable energy source on TEP should bc considered.展开更多
文摘Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.
基金Project supported by the 90th Anniversary of Chulalongkorn University Fund(Ratchadaphiseksomphot Endowment Fund)the National Research University Project,Office of Higher Education Commission(No.WCU-039-EN-57)
文摘We propose a new robust optimization approach to evaluate the impact of an intermittent renewable energy source on transmission expansion planning (TEP). The objective function of TEP is composed of the investment cost of the transmission line and the operating cost of conventional generators. A method to select suitable scenarios representing the intermittent renewable energy generation and loads is proposed to obtain robust expansion planning for all possible scenarios. A meta-heuristic algorithm called adaptive tabu search (ATS) is employed in the proposed TEE ATS iterates between the main problem, which minimizes the investment and operating costs, and the subproblem, which minimizes the cost of power generation from conventional generators and curtailments of renewable energy generation and loads. The subproblem is solved by nonlinear programming (NLP) based on an interior point method. Moreover, the impact of an intermittent renewable energy source on TEP was evaluated by comparing expansion planning with and without consideration of a renewable energy source. The IEEE Reliability Test System 79 (RTS 79) was used for testing the proposed method and evaluating the impact of an intermittent renewable energy source on TEP. The results show that the proposed robust optimization approach provides a more robust solution than other methods and that the impact of an intermittent renewable energy source on TEP should bc considered.