High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computa...High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.展开更多
Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving o...Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving object detection algorithms is based on Adaptive Gaussian Mixture Model (AGMM). Although ACMM-hased object detection shows very good performance with respect to object detection accuracy, AGMM is very complex model requiring lots of floatingpoint arithmetic so that it should pay for expensive computational cost. Thus, direct implementation of the AGMM-based object detection for embedded DSPs without floating-point arithmetic HW support cannot satisfy the real-time processing requirement. This paper presents a novel rcal-time implementation of adaptive Gaussian mixture model-based moving object detection algorithm for fixed-point DSPs. In the proposed implementation, in addition to changes of data types into fixed-point ones, magnification of the Gaussian distribution technique is introduced so that the integer and fixed-point arithmetic can be easily and consistently utilized instead of real nmnher and floatingpoint arithmetic in processing of AGMM algorithm. Experimental results shows that the proposed implementation have a high potential in real-time applications.展开更多
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro...In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels.展开更多
Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation...Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient.展开更多
文摘High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.
基金supported by Soongsil University Research Fund and BK 21 of Korea
文摘Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving object detection algorithms is based on Adaptive Gaussian Mixture Model (AGMM). Although ACMM-hased object detection shows very good performance with respect to object detection accuracy, AGMM is very complex model requiring lots of floatingpoint arithmetic so that it should pay for expensive computational cost. Thus, direct implementation of the AGMM-based object detection for embedded DSPs without floating-point arithmetic HW support cannot satisfy the real-time processing requirement. This paper presents a novel rcal-time implementation of adaptive Gaussian mixture model-based moving object detection algorithm for fixed-point DSPs. In the proposed implementation, in addition to changes of data types into fixed-point ones, magnification of the Gaussian distribution technique is introduced so that the integer and fixed-point arithmetic can be easily and consistently utilized instead of real nmnher and floatingpoint arithmetic in processing of AGMM algorithm. Experimental results shows that the proposed implementation have a high potential in real-time applications.
基金National Youth Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)Jiangsu University Superior Discipline Construction Project。
文摘In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels.
基金Project (Nos 60602012 and 60675023) supported by the National Natural Science Foundation of Chinathe National High-Tech Re-search and Development Program (863) of China (No 2007AA01Z 164)the Shanghai Key Laboratory Opening Plan Grant (No.06dz22103),China
文摘Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient.