期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
融合LBP与背景建模的自适应目标检测混合算法 被引量:3
1
作者 乐应英 胡静波 《计算机与数字工程》 2013年第7期1081-1084,共4页
提高目标检测算法在复杂场景下的检测鲁棒性是目前计算机视觉领域的一个重点、难点问题。为了实现在多种背景扰动以及阴影同时存在的复杂场景下,对运动目标的准确、鲁棒提取,论文提出了一种融合纹理特征和背景建模的自适应目标检测混合... 提高目标检测算法在复杂场景下的检测鲁棒性是目前计算机视觉领域的一个重点、难点问题。为了实现在多种背景扰动以及阴影同时存在的复杂场景下,对运动目标的准确、鲁棒提取,论文提出了一种融合纹理特征和背景建模的自适应目标检测混合算法。首先,为了对阴影进行有效处理,论文提出融合纹理特征的背景建模法;同时,在背景建模的基础上,引入亮度信息预处理程序;最后,论文在对复杂场景下(包括室内、室外)的背景扰动进行分析归类的基础上,将帧间差分法和背景建模法有机结合,有效提高算法对复杂场景的适应性。实验结果表明,复杂场景下,该算法对大多数背景扰动都具有一定的鲁棒性,能够实时、准确地检测出运动目标。 展开更多
关键词 背景扰动 LBP纹理 背景建模 自适应目标检测
下载PDF
采用扩展MRF的红外目标自适应检测方法 被引量:3
2
作者 薛永宏 安玮 +1 位作者 张涛 张寅生 《红外与激光工程》 EI CSCD 北大核心 2013年第8期2288-2293,共6页
针对天基红外监视系统中不同形状目标的联合检测问题,提出基于扩展马尔可夫随机场的自适应目标检测算法。首先分析了天基红外监视系统中的目标特性,在此基础上以典型目标形状为模板,构建了扩展的马尔可夫随机场邻域系统;其次构建了新的... 针对天基红外监视系统中不同形状目标的联合检测问题,提出基于扩展马尔可夫随机场的自适应目标检测算法。首先分析了天基红外监视系统中的目标特性,在此基础上以典型目标形状为模板,构建了扩展的马尔可夫随机场邻域系统;其次构建了新的马尔可夫势函数,并利用红外图像中背景与目标之间的马尔可夫势差异,将复杂背景中不同形状目标联合检测问题转换为马尔可夫势差异的判别问题,有效解决了马尔可夫随机场理论框架下混合形状目标检测问题。仿真试验结果表明,所提出的算法能够根据目标形状的变化自适应地检测各类目标,并可在不同图像信杂比条件下进行目标检测处理,具有较强的鲁棒性。 展开更多
关键词 扩展马尔可夫随机场 自适应目标检测 目标形状
下载PDF
一种高分辨率雷达海上目标自适应检测器 被引量:2
3
作者 杨俭 曲长文 周强 《雷达科学与技术》 2013年第5期516-521,共6页
针对海上目标因波浪起伏和转向等导致的姿态变化引起的散射点起伏问题,在未知协方差矩阵的复高斯噪声背景下,研究了高距离分辨率雷达的距离扩展目标自适应检测问题。利用与待检测单元具有相同协方差矩阵结构的辅助数据估计未知噪声协方... 针对海上目标因波浪起伏和转向等导致的姿态变化引起的散射点起伏问题,在未知协方差矩阵的复高斯噪声背景下,研究了高距离分辨率雷达的距离扩展目标自适应检测问题。利用与待检测单元具有相同协方差矩阵结构的辅助数据估计未知噪声协方差矩阵,基于两步法检测策略获得了自适应检测器。恒虚警率特性分析表明,该检测器对不同噪声背景均具有很好的自适应特性。检测性能分析表明,该检测器对不同的目标模型具有很好的鲁棒性,且能有效避免"坍塌损失"。另外,通过增加传感器个数,可有效提高检测器性能。 展开更多
关键词 高分辨率雷达 自适应目标检测 性能分析 辅助数据 协方差矩阵
下载PDF
空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法 被引量:5
4
作者 高永婵 潘丽燕 +1 位作者 李亚超 左磊 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第5期765-777,共13页
针对多通道阵列雷达从实际杂波中检测目标场景,该文提出了一种面向多通道阵列雷达非高斯杂波背景的多秩距离扩展目标检测方法。首先,利用秩大于1的子空间矩阵和相应距离单元的坐标向量,建立了多秩距离扩展目标模型;然后,利用雷达接收单... 针对多通道阵列雷达从实际杂波中检测目标场景,该文提出了一种面向多通道阵列雷达非高斯杂波背景的多秩距离扩展目标检测方法。首先,利用秩大于1的子空间矩阵和相应距离单元的坐标向量,建立了多秩距离扩展目标模型;然后,利用雷达接收单元空间或时间中心对称探测场景下杂波协方差矩阵的反对称结构信息,通过酉变换,采取广义似然比、Rao、Wald检验准则,构建待解参数小样本估计策略,设计了面向非高斯杂波背景的多秩距离扩展目标检测方法。最后,通过理论推导证明了所提检测方法相对于杂波协方差矩阵具有恒虚警特性。基于仿真数据和实测数据的实验结果表明,所提检测方法能够保证对杂波协方差矩阵具有恒虚警特性,此外,相较于现有检测方法,所提检测方法提升了小训练支持的目标检测性能,并且在导向矢量失配条件下,有效地改善目标检测的稳健性。 展开更多
关键词 自适应目标检测 距离扩展目标 多秩子空间 反对称性 非高斯
下载PDF
异常值个数未知下辅助数据自适应筛选方法
5
作者 简涛 马颖亮 +2 位作者 王海鹏 郭磊 魏广芬 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第5期1049-1060,共12页
在雷达目标多通道自适应检测场景下,诸多非均匀背景因素易导致异常值干扰,使得辅助数据独立同分布条件难以满足,已有辅助数据筛选方法往往假定异常值个数已知,在个数未知的情况下面临较大性能损失。为此,该文研究了异常值个数未知情况... 在雷达目标多通道自适应检测场景下,诸多非均匀背景因素易导致异常值干扰,使得辅助数据独立同分布条件难以满足,已有辅助数据筛选方法往往假定异常值个数已知,在个数未知的情况下面临较大性能损失。为此,该文研究了异常值个数未知情况下辅助数据自适应筛选方法。首先,在杂噪协方差矩阵已知条件下,建立了异常数据集合的最大似然估计,基于广义内积对辅助数据进行初步排序,将异常数据集合的最大似然估计过程简化为异常值个数估计。其次,利用快速最大似然方法进行未知协方差矩阵估计,提出了未知异常值个数下辅助数据自适应筛选方法。进一步地,为降低异常值对初步排序性能的不利干扰,基于归一化采样协方差矩阵设计了归一化广义内积形式,并结合迭代估计方式,对前述辅助数据自适应筛选流程进行改进。仿真结果表明,与广义内积相比,采用归一化广义内积可获得更高的筛选精度,采用较小迭代次数即可获得稳定的归一化信干比改善;与已有辅助数据筛选方法相比,该文所提方法在异常值个数未知条件下具有更好的筛选性能。 展开更多
关键词 自适应目标检测 异常值个数 自适应筛选 似然函数 归一化广义内积
下载PDF
子空间不确定下多重假设AMF、Rao与Wald检测方法
6
作者 田晗 张宇 +2 位作者 许姗姗 高永婵 许智文 《海军航空大学学报》 2024年第5期622-632,共11页
由于目标多秩子空间大小的不确定性会导致多重假设检测发生,传统目标自适应二元检测方法不再适用。针对此问题,文章提出了子空间不确定下多重假设AMF、Rao与Wald检测方法。首先,基于Kullback-Leibler信息准则,建立了目标多秩子空间存在... 由于目标多秩子空间大小的不确定性会导致多重假设检测发生,传统目标自适应二元检测方法不再适用。针对此问题,文章提出了子空间不确定下多重假设AMF、Rao与Wald检测方法。首先,基于Kullback-Leibler信息准则,建立了目标多秩子空间存在多种假设下的目标检测模型;然后,基于AMF、Rao和Wald检测准则,设计多重假设检测器,并优化估计未知参数与计算惩罚项。最后,通过仿真实验验证了所提检测器的性能,并分析了惩罚项对各检测器性能的影响。实验结果表明,相比传统检测器,所提检测器在一定情况下具有更优的检测性能。 展开更多
关键词 自适应目标检测 多秩子空间 多重假设检测 模型阶次选择
下载PDF
非高斯杂波下自适应雷达目标检测新方法 被引量:5
7
作者 简涛 何友 +2 位作者 苏峰 曲长文 顾新锋 《航空学报》 EI CAS CSCD 北大核心 2010年第3期579-586,共8页
在球不变随机向量(SIRV)非高斯杂波背景下,研究了多脉冲相参雷达目标的自适应检测问题。假设杂波具有相同的协方差矩阵结构和可能相关的纹理分量,提出了新的协方差矩阵估计器,并获得了相应的自适应归一化匹配滤波器(ANMF)。理论分析表明... 在球不变随机向量(SIRV)非高斯杂波背景下,研究了多脉冲相参雷达目标的自适应检测问题。假设杂波具有相同的协方差矩阵结构和可能相关的纹理分量,提出了新的协方差矩阵估计器,并获得了相应的自适应归一化匹配滤波器(ANMF)。理论分析表明,在估计杂波分组大小与实际情况匹配时,所获得的ANMF对杂波功率水平和协方差矩阵结构均具有恒虚警率(CFAR)特性。仿真结果表明:当估计的杂波分组大小失配时,所获得的ANMF具有近似CFAR特性,并进一步分析了不同参数变化对所提检测器性能的影响。与已有的ANMF相比,所获得的ANMF具有更好的检测性能,且迭代次数更小,其相对于已知杂波协方差矩阵的最优归一化匹配滤波器(NMF)的检测损失也更小,具有很好的实际应用前景。 展开更多
关键词 雷达杂波 自适应雷达目标检测 恒虚警率 协方差矩阵 归一化匹配滤波器
原文传递
复合高斯杂波协方差矩阵估计的失配性能分析 被引量:3
8
作者 简涛 何友 +2 位作者 苏峰 顾雪峰 顾新锋 《电子学报》 EI CAS CSCD 北大核心 2011年第4期963-966,共4页
在球不变随机向量的复合高斯杂波满足局部均匀的背景下,当估计的杂波分组大小与实际情况失配时,分析了自适应归一化匹配滤波器(ANMF)的恒虚警率(CFAR)特性和检测性能.理论分析表明,当杂波实际分组大小是估计分组大小的整数倍时,ANMF检... 在球不变随机向量的复合高斯杂波满足局部均匀的背景下,当估计的杂波分组大小与实际情况失配时,分析了自适应归一化匹配滤波器(ANMF)的恒虚警率(CFAR)特性和检测性能.理论分析表明,当杂波实际分组大小是估计分组大小的整数倍时,ANMF检测器对协方差矩阵结构和杂波功率水平均具有CFAR特性;而在其它的情况下ANMF检测器只对协方差矩阵结构具有CFAR特性.仿真结果还表明,不同子集的选取对ANMF检测器的CFAR特性影响不大;而在不同的失配条件下,ANMF存在不同程度的检测损失,且在纹理分量相关性信息完全未知时检测损失最大. 展开更多
关键词 自适应目标检测 性能分析 协方差矩阵估计 恒虚警率 复合高斯杂波
下载PDF
A new approach for real time object detection and tracking on high resolution and multi-camera surveillance videos using GPU 被引量:4
9
作者 Mohammad Farukh Hashmi Ritu Pal +1 位作者 Rajat Saxena Avinash G.Keskar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期130-144,共15页
High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computa... High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object. 展开更多
关键词 central processing unit (CPU) graphics processing unit (GPU) MORPHOLOGY connected component labelling (CCL)
下载PDF
Improved Real-time Implementation of Adaptive Gassian Mixture Model-based Object Detection Algorithm for Fixed-point DSP Processors 被引量:2
10
作者 Byung-eun LEE Thanh-binh NGUYEN Sun-tae CHUNG 《Journal of Measurement Science and Instrumentation》 CAS 2010年第2期116-120,共5页
Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving o... Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving object detection algorithms is based on Adaptive Gaussian Mixture Model (AGMM). Although ACMM-hased object detection shows very good performance with respect to object detection accuracy, AGMM is very complex model requiring lots of floatingpoint arithmetic so that it should pay for expensive computational cost. Thus, direct implementation of the AGMM-based object detection for embedded DSPs without floating-point arithmetic HW support cannot satisfy the real-time processing requirement. This paper presents a novel rcal-time implementation of adaptive Gaussian mixture model-based moving object detection algorithm for fixed-point DSPs. In the proposed implementation, in addition to changes of data types into fixed-point ones, magnification of the Gaussian distribution technique is introduced so that the integer and fixed-point arithmetic can be easily and consistently utilized instead of real nmnher and floatingpoint arithmetic in processing of AGMM algorithm. Experimental results shows that the proposed implementation have a high potential in real-time applications. 展开更多
关键词 background modeling real-time computing object de-tection
下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
11
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3D object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
下载PDF
Bayesian moving object detection in dynamic scenes using an adaptive foreground model 被引量:1
12
作者 Sheng-yang YU Fang-lin WANG +1 位作者 Yun-feng XUE Jie YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1750-1758,共9页
Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation... Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient. 展开更多
关键词 Moving object detection Foreground model Kernel density estimation (KDE) MAP-MRF estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部