针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的...针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。展开更多
文摘在下肢康复机器人的康复训练过程中,模型参数、环境干扰等不确定性因素会影响机器人轨迹跟踪的精度。针对这一问题,提出了一种基于径向基函数(Radial Basis Function,RBF)神经网络的自适应补偿控制,该控制方法能够提高机械系统轨迹跟踪的精确性。首先,设计一款具有4种工作模式、运动稳定的闭链卧式下肢康复机器人结构;然后,利用拉格朗日方法求解动力学名义模型,将康复装置的模型参数以及外界干扰等不确定性因素分离出来,并设计基于RBF神经网络的自适应补偿算法对其进行逼近控制;最后,通过Matlab/Simulink环境对其进行仿真验证,证明了该控制策略的有效性。结果显示,在人体步态曲线轨迹跟踪中,提出的基于RBF神经网络的自适应补偿算法相比传统的模糊比例-积分-微分(Proportional Integral Derivative,PID)控制的方法响应速度快、跟踪效果好,且髋关节和膝关节轨迹跟踪的角度误差峰值分别为0.08°和0.13°,远小于患者下肢在康复运动中的转动角度。设计了单腿样机试验,试验结果表明,采用的RBF补偿自适应控制器能够实现高精度的跟踪结果,也能够满足患者在康复训练中安全性的要求。
文摘针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。