期刊文献+
共找到1,560篇文章
< 1 2 78 >
每页显示 20 50 100
基于自适应网格粒子群算法的多目标配送优化模型 被引量:4
1
作者 吴小虎 徐琪 《公路交通科技》 CAS CSCD 北大核心 2010年第5期132-136,共5页
对配送方案的选择提出多目标优化,在满足客户需求的前提下,力求成本最低和各配送中心负荷均衡,建立多目标规划模型。运用粒子群算法对解空间粒子进行局部和全局的搜索,再运用自适应网格算法对非劣解外部集进行更新和维护,保持其规模。... 对配送方案的选择提出多目标优化,在满足客户需求的前提下,力求成本最低和各配送中心负荷均衡,建立多目标规划模型。运用粒子群算法对解空间粒子进行局部和全局的搜索,再运用自适应网格算法对非劣解外部集进行更新和维护,保持其规模。实证表明,采用基于自适应网格的多目标粒子群算法对该模型进行求解能够得到均匀分布于解空间的Pareto前沿。结果表明两目标具有一定的悖反关系,据此选择满意解。 展开更多
关键词 运输经济 配送方案 自适应网格粒子群算法 多目标优化
下载PDF
自适应免疫粒子群算法在光伏MPPT中的应用
2
作者 李练兵 王兰超 +2 位作者 朱乐 韩琪琪 杨少波 《电源技术》 CAS 北大核心 2024年第4期749-754,共6页
光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程... 光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程中易早熟收敛至局部最优、迭代后期收敛速度慢以及精度低等问题,提出了一种自适应免疫粒子群算法。该算法对惯性权重和学习因子进行自适应调整,并且与免疫算法相结合。仿真结果表明:该算法在静态局部遮阴以及动态局部遮阴条件下,均能追踪到最大功率点,并且收敛速度更快,精度更高,稳定性更好。 展开更多
关键词 光伏电池 局部遮阴 MPPT 自适应免疫粒子算法
下载PDF
基于自适应变异粒子群算法的装配式建筑施工安全投入优化
3
作者 常春光 赵耀 《沈阳建筑大学学报(社会科学版)》 2024年第1期79-85,共7页
针对装配式建筑施工安全投入问题,以实际工程项目为例,对装配式建筑施工风险因素进行了二级分解;基于数学规划理论建立了非线性规划模型,并引入3种函数关系进行拟合;采用自适应变异粒子群算法在Matlab中进行求解,得到了相对较优方案。... 针对装配式建筑施工安全投入问题,以实际工程项目为例,对装配式建筑施工风险因素进行了二级分解;基于数学规划理论建立了非线性规划模型,并引入3种函数关系进行拟合;采用自适应变异粒子群算法在Matlab中进行求解,得到了相对较优方案。结果表明:在安全风险主要因素中,物的风险因素对安全投入最为敏感;在二级风险因素中,预制构件吊装器具的选择最为敏感,该结论可为日后施工安全投入的方向提供参考依据。 展开更多
关键词 自适应变异粒子算法 非线性规划 装配式建筑 施工安全
下载PDF
基于自适应混合粒子群算法优化支持向量机的乳腺癌预测
4
作者 王勇 吴慕云 《阜阳职业技术学院学报》 2024年第2期67-70,共4页
使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之... 使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之后,80%的数据用于模型的训练,剩余20%用于模型的测试。每次实验分别按照比例随机生成的训练集和测试集进行20次预测,计算平均正确率。实验表明,自适应混合粒子群算法优化精度高于标准粒子群算法和鲸鱼算法。 展开更多
关键词 乳腺癌 支持向量机 自适应 粒子优化算法
下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:1
5
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
下载PDF
基于改进粒子群算法的阻尼惯量自适应控制策略 被引量:1
6
作者 卢盛阳 朱钰 +3 位作者 陈涛 王同 王宁 吴蒙 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期68-75,共8页
针对传统虚拟同步发电机控制策略存在暂态调节时间长及稳定性差等问题,提出一种基于改进粒子群算法的阻尼惯量自适应控制策略。首先,通过分析系统受扰动后功角特性,提出阻尼惯量自适应控制策略;然后,利用改进粒子群算法选择控制策略初始... 针对传统虚拟同步发电机控制策略存在暂态调节时间长及稳定性差等问题,提出一种基于改进粒子群算法的阻尼惯量自适应控制策略。首先,通过分析系统受扰动后功角特性,提出阻尼惯量自适应控制策略;然后,利用改进粒子群算法选择控制策略初始值,给出关键参数的选取原则及具体范围;最后,通过与现有控制策略进行对比,分析不同惯量及阻尼下对系统影响并验证控制策略的优越性。结果表明,该策略可有效提高系统稳定性及动态响应性能。 展开更多
关键词 虚拟同步发电机 虚拟惯量 阻尼系数 自适应控制 粒子优化算法
下载PDF
基于改进粒子群算法的自适应构网型变流器控制策略 被引量:1
7
作者 段玉 朱子民 +3 位作者 王小云 陈杰 马健 南东亮 《广东电力》 北大核心 2024年第2期10-17,共8页
构网型控制是一种改善新能源高渗透率下电力系统稳定性问题的技术手段。针对传统构网型变流器均采用固定参数控制而未能发挥出最佳调频效果这一问题,基于构网型变流器控制参数可调的特点,提出一种自适应控制策略,以优化构网型变流器的... 构网型控制是一种改善新能源高渗透率下电力系统稳定性问题的技术手段。针对传统构网型变流器均采用固定参数控制而未能发挥出最佳调频效果这一问题,基于构网型变流器控制参数可调的特点,提出一种自适应控制策略,以优化构网型变流器的输出并改善电力系统的动态特性。首先,通过仿真实验得到典型构网型变流器虚拟惯量和阻尼系数在大功率事件下对系统动态特性的影响;其次,研究典型构网型变流器的频率曲线与功角曲线,提出包含频率偏差和频率变化率的自适应构网型变流器控制策略;然后,通过改进粒子群算法对自适应控制策略涉及参数进行整定;最后,基于MATLAB/Simulink搭建的微电网模型,验证所提控制策略的稳定性与鲁棒性。仿真结果表明,所提控制策略可以自适应改变控制参数,使构网型变流器的输出能够满足系统各个阶段的不同需求,优化电力系统的动态特性。 展开更多
关键词 构网型变流器 自适应控制 改进粒子算法 参数整定 电力系统稳定
下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用
8
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
下载PDF
基于巴特沃斯幅频特性的自适应粒子群算法
9
作者 吴子洋 刘旋 +1 位作者 章永龙 朱俊武 《扬州大学学报(自然科学版)》 CAS 2024年第3期46-52,共7页
针对传统粒子群算法存在求解精度低和易陷入局部最优等问题,提出一种基于巴特沃斯幅频特性的自适应粒子群算法(Butterworth amplitude-frequency characteristics based adaptive particle swarm optimization algorithm,BAC-PSO).一方... 针对传统粒子群算法存在求解精度低和易陷入局部最优等问题,提出一种基于巴特沃斯幅频特性的自适应粒子群算法(Butterworth amplitude-frequency characteristics based adaptive particle swarm optimization algorithm,BAC-PSO).一方面,借助巴特沃斯幅频特性设计一种惯性权重非线性递减策略,均衡算法中粒子的局部与全局搜索能力;另一方面,通过S型函数的粒子群优化策略和Sigmoid函数改进位置更新方法,进一步提升算法的求解精度.以5个经典的测试函数为基准,将BAC-PSO算法与5种经典粒子群算法的性能进行对比,并将其应用到求解压力容器模型的设计问题中.实验结果表明,相较于其他经典粒子群算法,BAC-PSO算法的求解精度更高,收敛速度更快,稳定性更好. 展开更多
关键词 粒子算法 巴特沃斯幅频特性 自适应 惯性权重 压力容器模型
下载PDF
基于自适应粒子群算法的船舶机舱双层布局优化研究
10
作者 杨帆 张佳宁 +1 位作者 刁峰 苏勇瑞 《舰船科学技术》 北大核心 2024年第17期69-76,共8页
为提高船舶机舱的智能设计水平,提出一种针对于船舶机舱设备布局的智能优化方法。以某船机舱为例,通过分析船舶机舱设备对于机舱内部温度的耐受性、通风需求、以及设备自重对于船舶重心位置的影响,建立船舶机舱设备的分层评分机制,实现... 为提高船舶机舱的智能设计水平,提出一种针对于船舶机舱设备布局的智能优化方法。以某船机舱为例,通过分析船舶机舱设备对于机舱内部温度的耐受性、通风需求、以及设备自重对于船舶重心位置的影响,建立船舶机舱设备的分层评分机制,实现设备在机舱内部的分层布置。从设备系统群关系、流通成本、倾斜力矩、吊装需求等6个角度出发对机舱双层布局进行分析并建立数学模型,运用罚函数法处理约束条件,运用自适应粒子群算法求解该数学模型,得出布局方案并进行合理性分析。使用该方法优化之后,同一系统或邻接性较强的设备紧密布置,非邻接性设备分散布置,设备之间的流通成本降低约12%,吊装距离减少约100%,倾斜力矩之和降低约130%。结果分析表明,该方法能有效地解决船舶机舱的布局优化问题,可为解决类似的布局优化问题提供参考。 展开更多
关键词 机舱布局 评分机制 数学模型 自适应粒子算法
下载PDF
基于S型映射的自适应粒子群优化算法
11
作者 薛文 《白城师范学院学报》 2024年第5期64-72,共9页
针对粒子群算法搜索精度不高,易陷入局部最优解的不足,提出了一种基于S型映射的自适应粒子群优化算法.首先,通过群体适应度方差策略,设定种群收敛阈值;然后,根据阈值采用S型映射自适应变异搜索策略,以提高全局探索能力;最后,根据适应值... 针对粒子群算法搜索精度不高,易陷入局部最优解的不足,提出了一种基于S型映射的自适应粒子群优化算法.首先,通过群体适应度方差策略,设定种群收敛阈值;然后,根据阈值采用S型映射自适应变异搜索策略,以提高全局探索能力;最后,根据适应值排序,采用S型映射自适应步长梯度搜索策略,以提高局部搜索能力.通过四个测试函数实验表明,该算法在收敛速度、收敛精度方面均有较大提升. 展开更多
关键词 粒子算法 适应度方差 S型映射 变异策略 梯度策略
下载PDF
基于改进粒子群算法的燃煤电厂经济调度自适应优化方法
12
作者 陈利 李华东 李志勇 《自动化应用》 2024年第20期151-152,158,共3页
经济调度优化关乎电厂的经济效益,为此,提出基于改进粒子群算法的燃煤电厂经济调度自适应优化方法,旨在最大化电厂经济效益、最小化发电成本,并设定相关约束条件,通过自适应调整粒子群算法参数,改进算法迭代求解模型,获得最优经济调度... 经济调度优化关乎电厂的经济效益,为此,提出基于改进粒子群算法的燃煤电厂经济调度自适应优化方法,旨在最大化电厂经济效益、最小化发电成本,并设定相关约束条件,通过自适应调整粒子群算法参数,改进算法迭代求解模型,获得最优经济调度策略。实际应用显示,该方法有效提升了电厂经济收益,减少了污染物排放,具有良好的优化效果。 展开更多
关键词 改进粒子算法 燃煤电厂 经济调度 自适应优化
下载PDF
基于贪心粒子群算法的10kV 配电网负荷自适应调度方法
13
作者 殷伟霖 《消费电子》 2024年第5期60-62,共3页
为满足10kV配电网负荷调度需求和优化目标,提高配电网的适应性与稳定性,基于贪心粒子群算法,本文提出了一种全新的10kV配电网负荷自适应调度方法。首先,对配电网负荷数据进行修正与离差归一化处理;其次,计算负荷偏度系数与负荷变异系数... 为满足10kV配电网负荷调度需求和优化目标,提高配电网的适应性与稳定性,基于贪心粒子群算法,本文提出了一种全新的10kV配电网负荷自适应调度方法。首先,对配电网负荷数据进行修正与离差归一化处理;其次,计算负荷偏度系数与负荷变异系数,提取负荷分布特征与波动特征;在此基础上,利用贪心粒子群算法,确定负荷当前粒子的位置和全局最优位置,自适应调度负荷。实验结果表明,提出的调度方法应用后,在适应度值上明显优于常规方法,能够更好地应对不同负荷变化情况,满足负荷需求和优化目标,自适应调度效果优势显著。 展开更多
关键词 贪心粒子算法 10kV配电网 负荷 自适应 调度
下载PDF
混合策略改进的粒子群算法 被引量:2
14
作者 朱茂桃 刘欢 +1 位作者 吴佘胤 商高高 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期110-121,共12页
针对粒子群算法易陷入局部最优、收敛精度低、收敛速度慢等缺陷,提出了基于混合策略的改进粒子群算法。使用融合Circle映射与精英反向学习的策略初始化种群,提升初始种群的质量,同时加快收敛速度;在粒子速度更新方式中引入蜘蛛移动策略... 针对粒子群算法易陷入局部最优、收敛精度低、收敛速度慢等缺陷,提出了基于混合策略的改进粒子群算法。使用融合Circle映射与精英反向学习的策略初始化种群,提升初始种群的质量,同时加快收敛速度;在粒子速度更新方式中引入蜘蛛移动策略平衡算法的全局搜索与局部搜索;提出了基于自适应t分布的变异策略,增强算法全局搜索和跳出局部最优能力;对15个单峰和多峰函数进行仿真实验,与其他3种算法进行了对比分析,结果表明:所提出的改进算法具有很强的寻优能力与稳定性。 展开更多
关键词 粒子优化算法 蜘蛛优化 自适应t分布
下载PDF
基于改进T分布烟花-粒子群算法的AUV全局路径规划
15
作者 刘志华 张冉 +2 位作者 郝梦男 安凯晨 陈嘉兴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3123-3134,共12页
针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorit... 针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorithm,TFWA-PSO),该算法融合了烟花算法的高效全局搜索能力和粒子群算法的快速局部寻优特性.在变异阶段,提出自适应T分布变异来扩大搜索范围,并在理论上证明了该变异方式能够使个体在局部最优解附近增强搜索能力.在选择阶段提出了适应度选择策略,淘汰适应度差的个体,解决了传统烟花算法易丢失优秀个体的问题,并对改进的T分布烟花算法与传统烟花算法的收敛速度进行对比.将改进算法的爆炸操作、变异操作和选择策略融合到粒子群算法中,对粒子群算法的速度更新公式进行了改进,同时从理论上对所改进的算法进行了收敛性证明.仿真实验结果表明,TFWA-PSO能够有效规划出一条最短路径,同时与给定的智能优化算法相比,TFWA-PSO在寻找最优路径的时间上平均降低了24.72%,能耗平均降低了17.33%,路径长度平均降低了16.96%. 展开更多
关键词 自主水下机器人 全局路径规划 烟花算法 粒子算法 自适应T分布变异 收敛性证明
下载PDF
基于自适应动态粒子群优化的RAK-SVD方法
16
作者 乐友喜 姚晓辰 +1 位作者 付俊楠 葛传友 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期494-503,共10页
K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪... K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪方法。首先通过修改字典原子和相关参数,解决了由于常规粒子群算法的惯性参数固定不变,导致后期搜索效率下降的问题;其次将正则化系数引入近似K-SVD(AK-SVD)方法,明显提升了去噪效果;最后利用自适应动态粒子群算法自动优选AK-SVD方法中的正则化参数,提高了稀疏分解的确定性,在对强反射信号进行去噪的同时加强了对弱信号的保护。模型测试和实际应用均表明,该方法有利于弱信号的提取和识别,不仅能够显著改善弱地震信号的去噪效果,还提升了计算效率。该方法具有一定的实际应用价值。 展开更多
关键词 自适应动态粒子算法 K-SVD字典 正则化 去噪
下载PDF
基于自适应变异粒子群的风光储微网调度
17
作者 张宁 李季 《天津理工大学学报》 2024年第2期77-83,共7页
为克服传统粒子群算法(particle swarm optimization,PSO)在求解时容易形成局部最优,求解精度低的不足,提出了一种基于自适应变异粒子群优化(adaptive mutation particle swarm optimization,AMPSO)的微电网调度求解方法。AMPSO惯性权... 为克服传统粒子群算法(particle swarm optimization,PSO)在求解时容易形成局部最优,求解精度低的不足,提出了一种基于自适应变异粒子群优化(adaptive mutation particle swarm optimization,AMPSO)的微电网调度求解方法。AMPSO惯性权重采用自适应正态分布递减,随着迭代次数的增加更新粒子位置的移动策略,并且在算法后期引入变异环节。为验证算法的有效性,该算法与其他改进算法进行收敛性能对比,并对4种典型天气情况下的微网运行成本模型仿真求解,得到最优调度。算例仿真结果表明,AMPSO能够对粒子全局最优搜索优化,在解决微网经济性运行问题上效果优于其他算法,可合理调配各微电源出力时段,具有良好的灵活性和可行性。 展开更多
关键词 微电网 调度 粒子算法 自适应 变异
下载PDF
改进自适应惯性权重粒子群算法及其在核动力管道布置中的应用 被引量:8
18
作者 林焰 辛登月 +2 位作者 卞璇屹 张乔宇 李铁骊 《中国舰船研究》 CSCD 北大核心 2023年第3期1-12,25,共13页
[目的]旨在研究非线性自适应惯性权重粒子群优化算法,实现船用核动力一回路系统管道路径的布置优化设计。[方法]根据船用核动力一回路系统的管道布局设计特点,建立一回路系统的管道布局空间模型、约束条件和评价函数;基于管道节点数量,... [目的]旨在研究非线性自适应惯性权重粒子群优化算法,实现船用核动力一回路系统管道路径的布置优化设计。[方法]根据船用核动力一回路系统的管道布局设计特点,建立一回路系统的管道布局空间模型、约束条件和评价函数;基于管道节点数量,提出一种粒子群优化(PSO)算法的新型定长编码方法,然后结合该编码方法建立方向引导机制;在此基础上,针对粒子群优化算法易陷入局部最优解、收敛速度慢的缺点,结合辅助线性变化的学习因子,提出一种基于非线性自适应惯性权重的改进粒子群优化算法;将改进粒子群优化算法与协同进化算法相结合,提出一种用于求解分支管道布局问题的协同进化粒子群优化算法,以用于核动力一回路系统的管道布局优化。[结果]仿真结果显示,所提的改进算法与标准算法相比收敛速度提高了40%~50%,不仅能够得到更好的管道布局效果,还解决了标准粒子群优化算法容易陷入局部最优解的问题。[结论]研究成果可为船用核动力一回路系统管道布置的优化设计提供有益的参考。 展开更多
关键词 船用核动力 一回路系统 粒子优化算法 非线性惯性权重 自适应 线性学习因子
下载PDF
混合自适应粒子群工作流调度优化算法 被引量:4
19
作者 马学森 许雪梅 +2 位作者 蒋功辉 乔焰 周天保 《计算机应用》 CSCD 北大核心 2023年第2期474-483,共10页
针对具有截止期的云工作流完成时间与执行成本冲突的问题,提出一种混合自适应粒子群工作流调度优化算法(HAPSO)。首先,基于截止期建立有向无环图(DAG)云工作流调度模型;然后,通过范数理想点与自适应权重的结合,将DAG调度模型转化为权衡... 针对具有截止期的云工作流完成时间与执行成本冲突的问题,提出一种混合自适应粒子群工作流调度优化算法(HAPSO)。首先,基于截止期建立有向无环图(DAG)云工作流调度模型;然后,通过范数理想点与自适应权重的结合,将DAG调度模型转化为权衡DAG完成时间和执行成本的多目标优化问题;最后,在粒子群优化(PSO)算法的基础上引入自适应惯性权重、自适应学习因子、花朵授粉算法的概率切换机制、萤火虫算法(FA)和粒子越界处理方法,从而平衡粒子群的全局搜索与局部搜索能力,进而求解DAG完成时间与执行成本的目标优化问题。实验中对比分析了PSO、惯性权重粒子群算法(WPSO)、蚁群算法(ACO)和HAPSO的优化结果。实验结果表明,HAPSO在权衡工作流(30~300任务数)完成时间与执行成本的多目标函数值上降低了40.9%~81.1%,HAPSO在工作流截止期约束下有效权衡了完成时间与执行成本。此外,HAPSO在减少完成时间或降低执行成本的单目标上也有较好的效果,验证了HAPSO的普适性。 展开更多
关键词 云工作流 调度 截止期 自适应权重 粒子优化算法 目标优化
下载PDF
面向动态公交的离散分层记忆粒子群优化算法
20
作者 黄君泽 吴文渊 +2 位作者 李轶 石明全 王正江 《计算机工程》 CAS CSCD 北大核心 2024年第4期20-30,共11页
随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足... 随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足。基于这一研究现状,提出动态公交问题模型和面向动态公交的离散分层记忆粒子群优化(PSO)算法。首先给出动态公交问题的目标函数和约束条件,给出动态公交问题的解的形式,并定义解的编辑距离;其次提出使用数据驱动的预计算路径集生成PSO算法的优质初始解的方法,给出基于解的编辑距离的PSO算法中粒子的变异概率和自适应收敛系数的计算方式;最后提出将粒子群分层求解的方法,其中低层粒子群可复用、可继承,从而减少单时间片内、时间片间复制和重初始化带来的性能损耗。基于重庆市北碚区蔡家岗街道的真实场景和亿级历史数据建立仿真环境进行实验,实验结果表明:相对于不分层PSO算法,分层PSO算法通过复用和继承能缩短超80%计算用时;自适应参数和变异机制能帮助算法更稳定地收敛到更优解;相对于传统公交系统,动态公交能在同等运力限制下,提高22%的乘客接单率,节省39.1%的乘客出行时间,所提算法能满足公交运营商在片区内进行动态公交调度的需求;相对于对比算法,所提算法平均缩短了85.3%的计算用时,并且在仅耗用80%里程的情况下提高了至少12%的接单率。 展开更多
关键词 智慧交通 动态公交问题 电召问题 粒子优化算法 预计算路径集 自适应变异
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部