In this paper, a close-loop feedback control is imposed locally on the Fitzhugh-Nagumo (FHN) system to suppress the stable spirals and spatiotemporal chaos according to the principle of self-adaptive coupling intera...In this paper, a close-loop feedback control is imposed locally on the Fitzhugh-Nagumo (FHN) system to suppress the stable spirals and spatiotemporal chaos according to the principle of self-adaptive coupling interaction. The simulation results show that an expanding target wave is stimulated by the spiral waves under dynamic control period when a local area. of 5 × 5 grids is controlled, or the spiral tip is driven to the board of the system, It is also found that the spatiotemporal chaos can be suppressed to get a stable homogeneous state within 50 time units as two local grids are controlled mutually. The mechanism of the scheme is briefly discussed.展开更多
The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling contro...The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.展开更多
In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control a...In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes.With the designed controllers,we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma.Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures.展开更多
基金The project supported partially by National Natural Science Foundation of China under Grant No. 90303010 We would like to thank H.Zhang for valuable discussions.
文摘In this paper, a close-loop feedback control is imposed locally on the Fitzhugh-Nagumo (FHN) system to suppress the stable spirals and spatiotemporal chaos according to the principle of self-adaptive coupling interaction. The simulation results show that an expanding target wave is stimulated by the spiral waves under dynamic control period when a local area. of 5 × 5 grids is controlled, or the spiral tip is driven to the board of the system, It is also found that the spatiotemporal chaos can be suppressed to get a stable homogeneous state within 50 time units as two local grids are controlled mutually. The mechanism of the scheme is briefly discussed.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB035600)the National Natural Science Foundation of China(Grant No.51377121)
文摘The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.
基金Supported by the National Natural Science Foundation of China under Grant No.61304173Foundation of Liaoning Educational Committee(No.13-1069)and Hangzhou Polytechnic(No.KZYZ-2009-2)
文摘In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes.With the designed controllers,we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma.Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures.