期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
采用自适应自回归小波神经网络的单步预测控制 被引量:2
1
作者 杨红 高月芳 +1 位作者 罗飞 许玉格 《信息与控制》 CSCD 北大核心 2010年第5期553-558,共6页
针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法.算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模... 针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法.算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模型,引入输出反馈和偏差校正克服预测误差,以此构造一步加权预测控制性能指标.然后采用Brent一维搜索方法求取控制律,Brent法无需任何相关的导数信息,需调整的参数少,使得Brent法适合实时控制.仿真研究说明了该非线性预测控制器的有效性. 展开更多
关键词 预测控制 混沌 非线性系统 自适应自回归小波神经网络
下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制
2
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 自回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
下载PDF
基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术
3
作者 朱纬 王敏林 董雪明 《电子测量技术》 北大核心 2024年第8期189-194,共6页
基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术... 基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术。为了提高温度误差建模的进度,提高传统神经网络的逼近能力,通过自适应前向线性预测滤波器对建模用测角仪温度漂移数据进行预处理,并采用自适应小波回声神经网络建立温度漂移模型,能够避免传统神经网络结构设计的盲目性和局部最优等问题,增强了网络学习能力和泛化能力,并利用自适应律代替神经网络梯度进行网络训练,提升神经网络的逼近精度和收敛速度。实验结果表明,该模型可以提高光纤陀螺测角仪的测量精度和环境适应性,为光纤陀螺测角仪的性能优化和实际应用提供了可靠的技术支撑。 展开更多
关键词 测角仪 温度误差建模 小波回声神经网络 粒子群优化 自适应前向线性预测滤
下载PDF
基于广义回归神经网络的风力发电场设备温度自适应预测方法
4
作者 张二辉 徐兴朝 +1 位作者 郑卫剑 贾政 《自动化与仪表》 2024年第10期72-75,共4页
传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因... 传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因素对应的数据,组成样本,对样本实施离群值处理和归一化处理。利用广义回归神经网络自适应预测设备温度并利用鸽群优化算法(PIO算法)自适应调整广义回归神经网络预测模型参数——平滑因子σ,提高其自适应能力。结果表明,所研究方法的预测偏度最高误差仅为0.3℃,说明该方法在预测温度时具有良好的准确性,预测值接近实际值。 展开更多
关键词 广义回归神经网络 风力发电场 设备温度 PIO算法 自适应预测方法
下载PDF
基于连续小波卷积神经网络的轴承智能故障诊断方法
5
作者 耿志强 陈威 +1 位作者 马波 韩永明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第10期2069-2075,共7页
传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的... 传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的计算空间,提高CNN的整体自适应性.在凯斯西储大学轴承数据集上开展滚动轴承故障诊断方法对比实验.结果表明,与传统基于CNN、快速傅里叶变换-CNN、长短时记忆CNN故障诊断方法相比,所提方法的故障诊断精度分别提高了7.45、4.46和1.53个百分点,CNN的收敛速度更快.在不同工况的泛化任务中,所提方法的平均准确率为99.64%,准确性和泛化能力良好. 展开更多
关键词 卷积神经网络(CNN) 连续小波 自适应激活函数 轴承 故障诊断
下载PDF
柔性铰接板振动视觉测量与小波神经网络控制
6
作者 邱志成 刘一鸿 李旻 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期998-1010,共13页
为了解决航天器上用于供能的太阳帆板类柔性薄板结构的振动问题,针对一种移动柔性铰接板系统构建了双目视觉系统的振动测控实验平台,采用双目立体视觉方法来检测振动,并设计了自回归小波神经网络控制器(Self-Recurrent Wavelet Neural N... 为了解决航天器上用于供能的太阳帆板类柔性薄板结构的振动问题,针对一种移动柔性铰接板系统构建了双目视觉系统的振动测控实验平台,采用双目立体视觉方法来检测振动,并设计了自回归小波神经网络控制器(Self-Recurrent Wavelet Neural Network Controller,SRWNNC)来抑制振动。对双目视觉系统进行了标定,基于视差原理和图像处理算法,通过解算标志点的三维坐标来获取振动信号。建立了系统的有限元模型,并通过辨识得到校正后的系统模型参数。基于辨识得到的模型在仿真环境中训练SRWNNC,用于实验系统的振动主动控制。分别针对移动柔性铰接板系统固定基座和平移轨迹运动两种情况,进行了双目视觉振动检测和振动控制仿真和实验研究。仿真和实验结果表明,双目视觉传感器对振动信号的检测精度小于0.1 mm,SRWNNC也展现出比大增益PD控制器更好的抑振效果,验证了双目视觉振动检测和SRWNNC抑制振动的准确性和有效性。 展开更多
关键词 双目视觉 移动柔性铰接板 自回归小波神经网络 振动抑制
下载PDF
基于小波变换与IAGA-BP神经网络的短期风电功率预测 被引量:1
7
作者 孙国良 伊力哈木·亚尔买买提 +3 位作者 张宽 吐松江·卡日 李振恩 邸强 《电测与仪表》 北大核心 2024年第5期126-134,145,共10页
为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风... 为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风向、历史风功率的不同频率特征信号,并引入改进自适应遗传算法(IAGA)对各序列BP神经网络的初始权值与阈值寻优,使用Sigmiod函数通过适应度值自适应改变交叉概率与变异概率;构建各序列的WT-IAGA-BP模型对短期风功率组合预测。通过仿真分析,并与ELM、IAGA-BP、WT-ELM及WT-LSSVM方法对比,验证该方法具有更高的预测精度和更好的预测性能。 展开更多
关键词 风电功率预测 数据清洗 小波变换 改进自适应遗传算法 神经网络
下载PDF
基于BP神经网络的爆炸用激波管峰值压力预测方法
8
作者 陈梓薇 王仲琦 曾令辉 《爆炸与冲击》 EI CAS CSCD 北大核心 2024年第5期130-139,共10页
针对爆炸用激波管缺乏相应的经验公式和数值模拟时效性差的问题,同时为了快速得到激波管内的峰值压力,建立预测爆炸用激波管试验段峰值压力的四层反向传播(back propagation,BP)神经网络。采用数值模拟方法计算激波管试验段峰值压力,计... 针对爆炸用激波管缺乏相应的经验公式和数值模拟时效性差的问题,同时为了快速得到激波管内的峰值压力,建立预测爆炸用激波管试验段峰值压力的四层反向传播(back propagation,BP)神经网络。采用数值模拟方法计算激波管试验段峰值压力,计算结果与激波管爆炸试验结果进行对比,平均相对误差为2.69%。证明激波管数值模型的准确性后,将数值模拟得到的195组激波管测得的峰值压力作为输出层,激波管驱动段TNT的药量、药柱的长径比以及爆炸比例距离作为神经网络的输入层。为了加快神经网络迭代速度和提高预测精度,使用自适应矩估计(adaptive moment estimation,ADAM)算法作为神经网络误差梯度下降的优化算法。结果表明,训练好的神经网络得到的预测结果与模拟值基本吻合,预测结果与数值模拟结果的平均相对误差为3.26%。BP神经网络模型能够反映激波管爆炸的峰值压力与影响因素之间的映射关系,采用BP神经网络模型计算时比数值模拟节约了大量运算时间。 展开更多
关键词 BP神经网络 峰值压力 自适应矩估计
下载PDF
基于改进小波神经网络的新型PMSM速度控制
9
作者 周雅夫 赵洋 《组合机床与自动化加工技术》 北大核心 2024年第10期105-108,114,共5页
采用传统PI控制策略的永磁同步电机调速系统无法兼顾良好的动态响应性能与抗扰动能力,且在实际应用中参数整定繁琐。为改善以上问题,对速度环设计一种改进型小波神经网络PI控制器,该控制器基于自适应学习速率的梯度下降法并引入惯性项... 采用传统PI控制策略的永磁同步电机调速系统无法兼顾良好的动态响应性能与抗扰动能力,且在实际应用中参数整定繁琐。为改善以上问题,对速度环设计一种改进型小波神经网络PI控制器,该控制器基于自适应学习速率的梯度下降法并引入惯性项在线更新网络参数,通过权重因子扩大PI参数输出范围,以增强控制器性能;为消除电流环比例参数对速度环的影响,设计无差拍电流预测控制器,进一步提升系统动态响应性能。仿真结果表明,上述控制方案能够实现速度环PI参数在线自整定,明显提升系统动态响应性能,且具有良好的抗扰动能力。 展开更多
关键词 PMSM 小波神经网络 自适应学习速率 PI控制 模型预测控制
下载PDF
基于小波神经网络修正自适应滤波的钻具姿态解算研究 被引量:1
10
作者 杨金显 刘鹏威 《制造业自动化》 北大核心 2023年第1期156-160,共5页
针对惯性随钻测量中,由于钻头振动导致系统三轴加速度计数据失真,从而使得解算的钻头姿态角误差较大的问题。提出一种基于小波神经网络(WNN)与自适应滤波(AKF)联合对钻具姿态进行估计的方法,首先建立钻具姿态自适应滤波的状态空间模型,... 针对惯性随钻测量中,由于钻头振动导致系统三轴加速度计数据失真,从而使得解算的钻头姿态角误差较大的问题。提出一种基于小波神经网络(WNN)与自适应滤波(AKF)联合对钻具姿态进行估计的方法,首先建立钻具姿态自适应滤波的状态空间模型,根据估计后的残差不断调整自适应因子,降低姿态的估计误差,提高钻具姿态估计精度;根据滤波器的输入输出建立小波神经网络模型,对比输出误差在线修正网络模型,对姿态信息进行反馈补偿。设计振动台实验以及钻进实验对所提方法验证,其中钻进实验中井斜角误差降低到±1.8°,实验结果表明,所提方法解算精度优于自适应卡尔曼滤波算法,能够有效抑制振动误差对姿态解算的影响,为实际钻井提供理论依据。 展开更多
关键词 随钻测量 振动 姿态解算 小波神经网络 自适应
下载PDF
改进的小波神经网络在智能运维中的预测研究
11
作者 周紫祥 周湘辉 王梦真 《计算机与数字工程》 2024年第7期2123-2128,2160,共7页
随着大数据时代的到来,神经网络算法目前已经得到了很好的发展和应用,但在应用时,固定的学习率太大或太小都将面临收敛速度缓慢甚至发散的问题。因此,为避免经验因素对传统神经网络影响,文章在调整权值的基础上引入了自适应学习率修订... 随着大数据时代的到来,神经网络算法目前已经得到了很好的发展和应用,但在应用时,固定的学习率太大或太小都将面临收敛速度缓慢甚至发散的问题。因此,为避免经验因素对传统神经网络影响,文章在调整权值的基础上引入了自适应学习率修订函数的改进方法,以达到提升网络训练的速度和稳定性的目的。以小波神经网络为例,应用智能运维中的趋势预测问题进行仿真检验,结果表明相对于固定学习率,文章提出的自适应学习率改进算法能够有效提高小波神经网络的收敛速度,并有效降低了其收敛误差。 展开更多
关键词 小波神经网络 自适应学习率 智能运维
下载PDF
基于双通道时频卷积神经网络的故障电弧检测
12
作者 向泽林 杨洋 +1 位作者 李平 阳世群 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期192-202,共11页
交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的... 交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的技术难以全面概括故障电弧的特征,而大多数基于深度神经网络的方法直接对电流信号进行特征学习,忽略了信号中的频率信息,从而导致泛化能力差的问题.对此,本文提出了基于时频特征学习的双通道时频卷积神经网络的故障电弧识别方法,设计了可学习的自适应离散小波变换,用于提取一维信号中的多尺度特征,同时通过短时傅里叶变换获取二维的时频图像特征,分别在这2种特征信号上进行卷积,最后将2个通道中学习的特征进行融合,用于分类预测.通过对故障电弧发生器采集到的3种工况下电弧电流信号进行性能评估,验证所提方法的有效性.实验结果表明,该方法与其他同类方法相比具有更高的电弧识别准确率,达到了97.91%. 展开更多
关键词 故障电弧 特征融合 双通道时频卷积神经网络 自适应离散小波分解 傅立叶变换
下载PDF
静止无功补偿器的小波神经网络PID控制方法研究 被引量:1
13
作者 周晓华 冯雨辰 +1 位作者 王月武 蓝会立 《自动化仪表》 CAS 2023年第11期48-53,共6页
静止无功补偿器(SVC)是电力系统中应用广泛的动态无功补偿装置。针对传统比例积分微分(PID)在SVC动态调节过程中由于控制器参数固定而存在动态响应、自适应能力差的问题,提出了一种基于小波神经网络PID(WNNPID)的SVC电流反馈电压稳定控... 静止无功补偿器(SVC)是电力系统中应用广泛的动态无功补偿装置。针对传统比例积分微分(PID)在SVC动态调节过程中由于控制器参数固定而存在动态响应、自适应能力差的问题,提出了一种基于小波神经网络PID(WNNPID)的SVC电流反馈电压稳定控制方法。首先,分别选取SVC的电压差ΔUr、电压误差ΔU和补偿电压USL作为WNNPID控制器的输入信号,而控制器的输出为SVC的参考电纳。然后,采用小波神经网络(WNN)和增量式PID控制对WNNPID控制器的结构进行设计。最后,采用Matlab/Simulink仿真平台对所提控制方法进行仿真,并与基于反向传播(BP)神经网络PID的控制效果进行了对比。仿真结果表明,所提WNNPID控制方法具有更稳定的电压控制效果、较快的响应速度、较好的动静态响应性能和较强的自适应能力。 展开更多
关键词 静止无功补偿器 电流反馈 电压稳定控制 小波神经网络 反向传播神经网络 动态响应 自适应能力 比例积分微分
下载PDF
基于小波变换及自适应线性神经网络的充电桩谐波检测方法
14
作者 潘汉平 《大众汽车》 2023年第10期13-18,共6页
针对大量引入作为一种非线性负载的电动汽车充电桩,给电网带来大量的谐波干扰,威胁电力系统电能质量等问题,文章提出了一种小波变换及自适应线性神经网络的充电桩谐波检测方法,该方法通过松散型结合的方式,既保留了小波分解重构的时域特... 针对大量引入作为一种非线性负载的电动汽车充电桩,给电网带来大量的谐波干扰,威胁电力系统电能质量等问题,文章提出了一种小波变换及自适应线性神经网络的充电桩谐波检测方法,该方法通过松散型结合的方式,既保留了小波分解重构的时域特性,又利用了自适应线性神经网络的高效性与准确性。仿真实验结果表明提出方法能够很好地检测出充电信号中的谐波。 展开更多
关键词 小波变换 自适应线性神经网络 充电桩 检测 松散型
下载PDF
电力变压器励磁涌流判别的自适应小波神经网络方法 被引量:28
15
作者 李海锋 王 钢 +1 位作者 李晓华 胡少鹏 《中国电机工程学报》 EI CSCD 北大核心 2005年第7期144-150,共7页
励磁涌流识别一直是电力变压器差动保护中比较关注的问题。文中提出了一种基于自适应小波神经网络实现变压器励磁涌流判别的新方法。结合励磁涌流和内部故障电流的特点,构建了一个四层的自适应小波神经网络模型,并对其具体的实现方法进... 励磁涌流识别一直是电力变压器差动保护中比较关注的问题。文中提出了一种基于自适应小波神经网络实现变压器励磁涌流判别的新方法。结合励磁涌流和内部故障电流的特点,构建了一个四层的自适应小波神经网络模型,并对其具体的实现方法进行了详细的分析;利用ATP-EMTP 程序进行仿真计算生成训练样本和测试样本,对所构建的网络进行了训练和测试,结果表明自适应小波神经网络能准确、可靠地识别出变压器的励磁涌流状态。 展开更多
关键词 电力变压器 励磁涌流 差动保护 自适应小波神经网络方法
下载PDF
一种自适应模糊小波神经网络及其在交流伺服控制中的应用 被引量:7
16
作者 侯润民 刘荣忠 +2 位作者 高强 王力 邓桐彬 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期781-788,共8页
针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRW... 针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。 展开更多
关键词 兵器科学与技术 大功率交流伺服系统 自回归小波神经网络 模糊小波神经网络间接自适应控制器 模糊小波神经网络
下载PDF
一种新型自适应神经网络回归估计算法 被引量:8
17
作者 周志华 陈兆乾 +1 位作者 邵栋 陈世福 《计算机学报》 EI CSCD 北大核心 2000年第6期654-659,共6页
结合自适应谐振理论和域理论的优点 ,针对回归估计问题的特性 ,提出了一种新型神经网络回归估计算法 FTART3.该算法学习速度快、归纳能力强 ,不仅具有增量学习能力 ,还克服了 BP类算法需要人为设置隐层神经元的缺陷 .直线、正弦、二维... 结合自适应谐振理论和域理论的优点 ,针对回归估计问题的特性 ,提出了一种新型神经网络回归估计算法 FTART3.该算法学习速度快、归纳能力强 ,不仅具有增量学习能力 ,还克服了 BP类算法需要人为设置隐层神经元的缺陷 .直线、正弦、二维墨西哥草帽、三维墨西哥草帽等 4个实验表明 ,FTART3在函数近似效果和训练时间代价上都优于目前常用于回归估计问题的 展开更多
关键词 神经网络 回归估计 域理论 自适应谐振理论 算法
下载PDF
一种基于小波神经网络的自适应控制方法 被引量:11
18
作者 方浩 薛培鼎 冯祖仁 《西安交通大学学报》 EI CAS CSCD 北大核心 2000年第2期75-79,共5页
提出了一种基于小波神经网络的自适应控制方法,该方法利用两个小波神经网络作为自适应控制系统的辨识器和控制器来构成自适应控制系统.由于小波函数具有紧支性以及神经网络的非线性映射能力,因而在所构成的控制系统中,辨识器能更准确地... 提出了一种基于小波神经网络的自适应控制方法,该方法利用两个小波神经网络作为自适应控制系统的辨识器和控制器来构成自适应控制系统.由于小波函数具有紧支性以及神经网络的非线性映射能力,因而在所构成的控制系统中,辨识器能更准确地近似具有较强非线性被控对象的动态特性,控制器能产生较为复杂的控制规律.仿真结果表明。 展开更多
关键词 自适应控制 神经网络 小波逼近 仿真 辨识器
下载PDF
基于自适应小波神经网络的复杂系统模式识别方法 被引量:5
19
作者 刘经纬 王普 杨蕾 《北京工业大学学报》 CAS CSCD 北大核心 2014年第6期843-850,共8页
针对传统神经网络应用于复杂系统建模和辨识中存在的训练效率、精度瓶颈问题,提出了一种自适应小波神经网络方法(adaptive wavelet neural network,AWNN).首先,通过设计自适应层、综合层,使神经网络能根据待处理的系统的样本数据特征自... 针对传统神经网络应用于复杂系统建模和辨识中存在的训练效率、精度瓶颈问题,提出了一种自适应小波神经网络方法(adaptive wavelet neural network,AWNN).首先,通过设计自适应层、综合层,使神经网络能根据待处理的系统的样本数据特征自适应工作于最佳工作区间;然后,通过将小波分析方法与对经典的基于误差反向传播算法的神经网络(back propagation neural network,BPNN)、径向基神经网络(radical basis function neural network,RBFNN)结合,保留了上述方法的优点,克服了传统神经网络方法各自的问题;最后,通过对BPNN、RBFNN和AWNN方法进行计算机仿真实验,验证了各算法的可行性、可达性和算法参数特性.实验结果表明:AWNN方法具有更快的收敛速度、更高的精度和更好的鲁棒性. 展开更多
关键词 自适应小波神经网络 小波分析 BP神经网络 RBF神经网络
下载PDF
基于小波分解-卷积神经网络和支持向量回归的短期负荷预测 被引量:20
20
作者 赵辉 杨赛 +1 位作者 岳有军 王红君 《科学技术与工程》 北大核心 2021年第25期10718-10724,共7页
为了提高短期负荷预测精度,考虑到除历史负荷数据之外的其他因素对短期负荷预测的重要影响,提出了一种基于离散小波分解(wavelet decomposition,WD)、卷积神经网络(convolutional neural network,CNN)和支持向量回归(support vector reg... 为了提高短期负荷预测精度,考虑到除历史负荷数据之外的其他因素对短期负荷预测的重要影响,提出了一种基于离散小波分解(wavelet decomposition,WD)、卷积神经网络(convolutional neural network,CNN)和支持向量回归(support vector regression,SVR)的负荷预测模型。首先,该方法通过小波分解算法对历史负荷数据进行分析与重构,得到长度相同的历史负荷数据,降低了原始序列中非平稳性对预测精度的影响;其次,对天气因素、日期类型进行特征构造,得到特征数据;最后,将处理后的负荷数据输入卷积神经网络支持向量回归机模型,将天气特征数据输入反向传播(back propagation,BP)神经网络支持向量回归模型,通过两个模型结果的叠加得到最终的预测值。实验结果表明,模型的预测精度和效率优于传统的CNN网络、SVR网络以及输入不进行划分的CNN-SVR模型,验证了其可行性。 展开更多
关键词 短期负荷预测 小波分解 卷积神经网络 支持向量回归
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部