针对依靠单一传感器定位存在定位不精确,甚至定位失败的问题,设计了一种基于扩展卡尔曼滤波器(Extended Kalman Filter,EKF)与动态加权融合法相结合的定位算法。首先,在自适应蒙特卡罗定位(Adaptive Monte Carlo Localization,AMCL)算...针对依靠单一传感器定位存在定位不精确,甚至定位失败的问题,设计了一种基于扩展卡尔曼滤波器(Extended Kalman Filter,EKF)与动态加权融合法相结合的定位算法。首先,在自适应蒙特卡罗定位(Adaptive Monte Carlo Localization,AMCL)算法的框架下,通过建立机器人运动模型与传感器观测模型,利用EKF将惯性测量单元(Inertial Measurement Unit,IMU)和编码器的数据进行融合。然后,设计了一种动态加权融合方法,依据方差大小动态分配各融合量的权重,将EKF的融合结果与特征匹配计算得到的视觉里程计信息进行加权融合,从而得到更精确的融合里程计信息。最后,将该融合后的里程计信息作为自适应蒙特卡罗定位的运动控制信息,进行粒子状态更新,从而实现全局定位。试验结果表明,该方法能够有效提高自动导引车(Automatic Guided Vehicle,AGV)的定位性能,动态定位精度能够稳定在较高精度范围。展开更多
文摘针对依靠单一传感器定位存在定位不精确,甚至定位失败的问题,设计了一种基于扩展卡尔曼滤波器(Extended Kalman Filter,EKF)与动态加权融合法相结合的定位算法。首先,在自适应蒙特卡罗定位(Adaptive Monte Carlo Localization,AMCL)算法的框架下,通过建立机器人运动模型与传感器观测模型,利用EKF将惯性测量单元(Inertial Measurement Unit,IMU)和编码器的数据进行融合。然后,设计了一种动态加权融合方法,依据方差大小动态分配各融合量的权重,将EKF的融合结果与特征匹配计算得到的视觉里程计信息进行加权融合,从而得到更精确的融合里程计信息。最后,将该融合后的里程计信息作为自适应蒙特卡罗定位的运动控制信息,进行粒子状态更新,从而实现全局定位。试验结果表明,该方法能够有效提高自动导引车(Automatic Guided Vehicle,AGV)的定位性能,动态定位精度能够稳定在较高精度范围。