卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化...卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化分块、自适应SVD(Singular Value Decomposition)分解和维度压缩三部分组成,通过分块后的子区域极大地关注三维模型的局部特征,并用自适应的方法判断每个局部特征的影响大小,最后维度压缩去除较小影响的数值.动态奇异值网络是将这三部分作为卷积神经网络的后端,形成一个端对端(end to end)可训练的三维模型特征提取框架.与当今先进方法相比,在ModelNet40数据集上的分类和检索结果分别提升了1. 2%和0. 8%,在ModelNet10和ModelNet40的Top-10平均检索精度分别提高了3. 7%和4%.展开更多
文摘卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化分块、自适应SVD(Singular Value Decomposition)分解和维度压缩三部分组成,通过分块后的子区域极大地关注三维模型的局部特征,并用自适应的方法判断每个局部特征的影响大小,最后维度压缩去除较小影响的数值.动态奇异值网络是将这三部分作为卷积神经网络的后端,形成一个端对端(end to end)可训练的三维模型特征提取框架.与当今先进方法相比,在ModelNet40数据集上的分类和检索结果分别提升了1. 2%和0. 8%,在ModelNet10和ModelNet40的Top-10平均检索精度分别提高了3. 7%和4%.