Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to ...Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.展开更多
An adaptive pipelining scheme for H.264/AVC context-based adaptive binary arithmetic coding(CABAC) decoder for high definition(HD) applications is proposed to solve data hazard problems coming from the data dependenci...An adaptive pipelining scheme for H.264/AVC context-based adaptive binary arithmetic coding(CABAC) decoder for high definition(HD) applications is proposed to solve data hazard problems coming from the data dependencies in CABAC decoding process.An efficiency model of CABAC decoding pipeline is derived according to the analysis of a common pipeline.Based on that,several adaptive strategies are provided.The pipelining scheme with these strategies can be adaptive to different types of syntax elements(SEs) and the pipeline will not stall during decoding process when these strategies are adopted.In addition,the decoder proposed can fully support H.264/AVC high4:2:2 profile and the experimental results show that the efficiency of decoder is much higher than other architectures with one engine.Taking both performance and cost into consideration,our design makes a good tradeoff compared with other work and it is sufficient for HD real-time decoding.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
基金supported in part by National Natural Science Foundation of China (61101114, 61671324) the Program for New Century Excellent Talents in University (NCET-12-0401)
文摘Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.
基金Supported by the National Natural Science Foundation of China(No.61076021)the National Basic Research Program of China(No.2009CB320903)China Postdoctoral Science Foundation(No.2012M511364)
文摘An adaptive pipelining scheme for H.264/AVC context-based adaptive binary arithmetic coding(CABAC) decoder for high definition(HD) applications is proposed to solve data hazard problems coming from the data dependencies in CABAC decoding process.An efficiency model of CABAC decoding pipeline is derived according to the analysis of a common pipeline.Based on that,several adaptive strategies are provided.The pipelining scheme with these strategies can be adaptive to different types of syntax elements(SEs) and the pipeline will not stall during decoding process when these strategies are adopted.In addition,the decoder proposed can fully support H.264/AVC high4:2:2 profile and the experimental results show that the efficiency of decoder is much higher than other architectures with one engine.Taking both performance and cost into consideration,our design makes a good tradeoff compared with other work and it is sufficient for HD real-time decoding.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.