A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industr...A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industry processes due to safety limitation, environmental regulations, consumer specifications and physical restriction. ARX-PLS decoupling character enables to turn the multivariable model predictive control(MPC) controller design in original space into the multi-loop single input single output(SISO) MPC controllers design in latent space.An idea of iterative method is applied to decouple the constraints latent variables in PLS framework and recursive least square is introduced to identify ARX-PLS model. This algorithm is applied to a non-square simulation system and a stirred reactor for ethylene polymerizations comparing with adaptive internal model control(IMC) method based on ARX-PLS framework. Its application has shown that this method outperforms adaptive IMC method based on ARX-PLS framework to some extent.展开更多
Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and different...Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.展开更多
基金Supported by the National Natural Science Foundation of China (61174114, 60574047), the National High Technology Re-search and Development Program of China (2007AA04Z168) and the Research Fund for the Doctoral Program of Higher Education of China (20120101130016).
文摘A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industry processes due to safety limitation, environmental regulations, consumer specifications and physical restriction. ARX-PLS decoupling character enables to turn the multivariable model predictive control(MPC) controller design in original space into the multi-loop single input single output(SISO) MPC controllers design in latent space.An idea of iterative method is applied to decouple the constraints latent variables in PLS framework and recursive least square is introduced to identify ARX-PLS model. This algorithm is applied to a non-square simulation system and a stirred reactor for ethylene polymerizations comparing with adaptive internal model control(IMC) method based on ARX-PLS framework. Its application has shown that this method outperforms adaptive IMC method based on ARX-PLS framework to some extent.
基金Project(61174132) supported by the National Natural Science Foundation of ChinaProject(09JJ6098) supported by the Natural Science Foundation of Hunan Province, China
文摘Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.