期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
自适应共振解调法及其在滚动轴承故障诊断中的应用 被引量:25
1
作者 刘金朝 丁夏完 王成国 《振动与冲击》 EI CSCD 北大核心 2007年第1期38-41,共4页
与AR模型、小波变换等故障诊断方法相比较,工程人员更多的是采用共振解调法对滚动轴承故障进行诊断,但诊断成功与否很大程度上依赖于滤波器中心频率及其带宽的选择。这里提出的诊断滚动轴承故障的自适应共振解调法避免了带通滤波器难以... 与AR模型、小波变换等故障诊断方法相比较,工程人员更多的是采用共振解调法对滚动轴承故障进行诊断,但诊断成功与否很大程度上依赖于滤波器中心频率及其带宽的选择。这里提出的诊断滚动轴承故障的自适应共振解调法避免了带通滤波器难以选择的困难。其核心思想是:不采用滤波的方式而是通过先对时间信号进行时频变换,然后从时频能量谱中自动提取时间能量信号的方式来达到将由于冲击引起的共振高频信号和高能量的低频信号分离。此外,给出了一个统一的框架从时频能量谱中自动提取类似于时间边缘的时间能量信号,即Lp范数准则。数值实验结果表明,自适应共振解调法能有效地诊断滚动轴承的外圈故障、内圈故障、滚动体故障,而且比传统的共振解调法的性能更优。 展开更多
关键词 自适应共振解调 时频分析 L^p范数 细化傅里叶技术 滚动轴承 故障诊断
下载PDF
地铁列车轴承振动特征提取算法研究
2
作者 崔洪举 李海涛 +1 位作者 张宝安 郭勤涛 《机械与电子》 2017年第8期17-20,共4页
在地铁列车旋转部件中,轴箱轴承是关键的旋转部件之一。提取轴承的振动特征,并对轴承内部结构进行状态评估和健康监测,是列车轴承状态健康监测技术的发展方向和重要应用。通过轴箱轴承跑合试验台试验,针对轴承健康诊断经典方法—包络解... 在地铁列车旋转部件中,轴箱轴承是关键的旋转部件之一。提取轴承的振动特征,并对轴承内部结构进行状态评估和健康监测,是列车轴承状态健康监测技术的发展方向和重要应用。通过轴箱轴承跑合试验台试验,针对轴承健康诊断经典方法—包络解调法的局限,实现了一种新的自适应包络解调方法,结合轴承振动试验结果进行了地铁列车轴承振动特征提取,验证了新方法的有效性。 展开更多
关键词 结构健康监测 轴箱轴承 自适应解调法 轴承振动特征
下载PDF
Improved adaptive filter and its application in acoustic emission signals 被引量:4
3
作者 Wang Jiajun Xu Feiyun 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期43-50,共8页
In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According t... In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According to the contradiction between the convergence speed and steady-state error of the traditional least mean square(LMS) adaptive filter, an improved LMS adaptive filtering algorithm with variable iteration step is proposed on the basis of the existing algorithms. Based on the Sigmoid function, an expression with three parameters is constructed by function translation and symmetric transformation.As for the error mutation, e(k) and e(k-1) are combined to control the change of the iteration step. The selection and adjustment process of each parameter is described in detail, and the MSE is used to evaluate the performance. The simulation results show that the proposed algorithm significantly increases the convergence speed, reduces the steady-state error, and improves the performance of the adaptive filter. The improved algorithm is applied to the AE signal processing, and the experimental signal is demodulated by an empirical mode decomposition(EMD) envelope to obtain the upper and lower envelopes. Then, the expected function related to the AE signal is established. Finally, the improved algorithm is substituted into the adaptive filter to filter the AE signal. A good result is achieved, which proves the feasibility of adaptive filtering technology in AE signal processing. 展开更多
关键词 acoustic emission adaptive filtering envelope demodulation least mean square(LMS)algorithm variable iteration step
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部