Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless...Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.展开更多
To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance....To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.展开更多
A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,whi...A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.展开更多
This paper considers the adaptive tracking problem for a class of first-order systems with binary-valued observations generated via fixed thresholds. A recursive projection algorithm is proposed for parameter estimati...This paper considers the adaptive tracking problem for a class of first-order systems with binary-valued observations generated via fixed thresholds. A recursive projection algorithm is proposed for parameter estimation based on the statistical properties of the system noise. Then, an adaptive control law is designed via the certainty equivalence principle. By use of the conditional expectations of the innovation and output prediction with respect to the estimates, the closed-loop system is shown to be stable and asymptotically optimal. Meanwhile, the parameter estimate is proved to be both almost surely and mean square convergent, and the convergence rate of the estimation error is also obtained. A numerical example is given to demonstrate the efficiency of the adaptive control law.展开更多
基金Project(2009AA04Z209) supported by the National High Technology Research and Development Program of ChinaProject(R1090674) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(51075363) supported by the National Natural Science Foundation of China
文摘Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
文摘To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.
基金Project supported by the National Natural Science Foundation of China(Nos.61331019 and 61490691) the China Scholarship Council Postgraduate Scholarship Program(2014) the National Grid(UK)
文摘A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.
基金supported by the National Natural Science Foundation of China under Grant Nos.60934006, 61174042,and 61120106011
文摘This paper considers the adaptive tracking problem for a class of first-order systems with binary-valued observations generated via fixed thresholds. A recursive projection algorithm is proposed for parameter estimation based on the statistical properties of the system noise. Then, an adaptive control law is designed via the certainty equivalence principle. By use of the conditional expectations of the innovation and output prediction with respect to the estimates, the closed-loop system is shown to be stable and asymptotically optimal. Meanwhile, the parameter estimate is proved to be both almost surely and mean square convergent, and the convergence rate of the estimation error is also obtained. A numerical example is given to demonstrate the efficiency of the adaptive control law.