Dan Simon用生物地理学的方法和机制来解决工程优化问题,提出了生物地理学优化算法(Biogeography Based Optimization,BBO)。该算法因其独特的搜索机制和较好的性能在智能优化算法领域得到了广泛的关注。为了进一步提高生物地理学优化...Dan Simon用生物地理学的方法和机制来解决工程优化问题,提出了生物地理学优化算法(Biogeography Based Optimization,BBO)。该算法因其独特的搜索机制和较好的性能在智能优化算法领域得到了广泛的关注。为了进一步提高生物地理学优化算法的全局和局部收索能力,提出了一种基于动态选择迁出地与混合自适应迁入的优化策略,对生物地理学优化算法进行改进,形成一种新的改进型BBO算法。该算法根据进化阶段动态选择待迁出地,并综合当前迁出地和随机迁出地优化迁入策略;同时,设计与适应度相关的变异机制,以增加算法的全局搜索能力。仿真实验结果表明,该算法在全局搜索、收敛速度和收敛精度上均优于对比算法。展开更多
提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于...提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于BBO的多目标进化模型。在模型中,结合栖息地个体间的Pareto支配关系对栖息地适应度指数进行了重新定义;为了保持栖息地种群的分布性,提出一种新的基于动态距离矩阵的分布性保持机制;同时,根据多目标优化的特点,提出了新的自适应迁入迁出率确定方式,动态迁移策略及分段logistic混沌变异策略。通过对测试函数ZDT和DTLZ的仿真实验表明,与现有多种多目标优化算法相比,MOBBO在解集的收敛性和分布的均匀性上均有明显改善,能够有效且高效地进行复杂多目标优化问题的求解。展开更多
文摘Dan Simon用生物地理学的方法和机制来解决工程优化问题,提出了生物地理学优化算法(Biogeography Based Optimization,BBO)。该算法因其独特的搜索机制和较好的性能在智能优化算法领域得到了广泛的关注。为了进一步提高生物地理学优化算法的全局和局部收索能力,提出了一种基于动态选择迁出地与混合自适应迁入的优化策略,对生物地理学优化算法进行改进,形成一种新的改进型BBO算法。该算法根据进化阶段动态选择待迁出地,并综合当前迁出地和随机迁出地优化迁入策略;同时,设计与适应度相关的变异机制,以增加算法的全局搜索能力。仿真实验结果表明,该算法在全局搜索、收敛速度和收敛精度上均优于对比算法。
文摘提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于BBO的多目标进化模型。在模型中,结合栖息地个体间的Pareto支配关系对栖息地适应度指数进行了重新定义;为了保持栖息地种群的分布性,提出一种新的基于动态距离矩阵的分布性保持机制;同时,根据多目标优化的特点,提出了新的自适应迁入迁出率确定方式,动态迁移策略及分段logistic混沌变异策略。通过对测试函数ZDT和DTLZ的仿真实验表明,与现有多种多目标优化算法相比,MOBBO在解集的收敛性和分布的均匀性上均有明显改善,能够有效且高效地进行复杂多目标优化问题的求解。