根据总体最小二乘(total least squares,TLS)模型理论,提出了一种影像端元光谱可受噪声污染的混合光谱线性扩展模型,并实现了该模型的端元光谱自动迭代提取以及混合像元的限定性分解。实验结果表明,扩展的混合像元分解模型明显...根据总体最小二乘(total least squares,TLS)模型理论,提出了一种影像端元光谱可受噪声污染的混合光谱线性扩展模型,并实现了该模型的端元光谱自动迭代提取以及混合像元的限定性分解。实验结果表明,扩展的混合像元分解模型明显优于传统的最小二乘分解模型,总体精度大约提高了10%~20%。展开更多
针对基于接收信号强度(received signal strength,RSS)测距定位框架,提出基于贝叶斯测距和迭代最小二乘定位的RSS的定位算法.在测距阶段,先利用贝叶斯概率模型处理测距过程,并采用最小均方误差(minimum mean square error,MMSE)估计距离...针对基于接收信号强度(received signal strength,RSS)测距定位框架,提出基于贝叶斯测距和迭代最小二乘定位的RSS的定位算法.在测距阶段,先利用贝叶斯概率模型处理测距过程,并采用最小均方误差(minimum mean square error,MMSE)估计距离;在定位阶段,利用迭代最小二乘(iterative least square,ILS)估计节点的位置,最后重点对其定位性能做了理论分析和对比实验.仿真结果表明,提出的MMSE+ILS定位的方案极大地提高了定位精度,并降低了计算复杂度,但运行时间略有提高.展开更多
文摘根据总体最小二乘(total least squares,TLS)模型理论,提出了一种影像端元光谱可受噪声污染的混合光谱线性扩展模型,并实现了该模型的端元光谱自动迭代提取以及混合像元的限定性分解。实验结果表明,扩展的混合像元分解模型明显优于传统的最小二乘分解模型,总体精度大约提高了10%~20%。
文摘针对基于接收信号强度(received signal strength,RSS)测距定位框架,提出基于贝叶斯测距和迭代最小二乘定位的RSS的定位算法.在测距阶段,先利用贝叶斯概率模型处理测距过程,并采用最小均方误差(minimum mean square error,MMSE)估计距离;在定位阶段,利用迭代最小二乘(iterative least square,ILS)估计节点的位置,最后重点对其定位性能做了理论分析和对比实验.仿真结果表明,提出的MMSE+ILS定位的方案极大地提高了定位精度,并降低了计算复杂度,但运行时间略有提高.