期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于IABC优化LSSVR的变形预测研究 被引量:9
1
作者 冯腾飞 刘小生 +1 位作者 钟钰 于良 《大地测量与地球动力学》 CSCD 北大核心 2019年第1期98-102,共5页
针对最小二乘支持向量回归机(LSSVR)中惩罚参数c和核函数参数σ难以确定,以及标准人工蜂群算法(ABC)易陷入局部最优、收敛速度慢等问题,提出一种改进的人工蜂群算法(IABC)来优化LSSVR的参数并进行变形预测研究。首先,IABC算法利用反向... 针对最小二乘支持向量回归机(LSSVR)中惩罚参数c和核函数参数σ难以确定,以及标准人工蜂群算法(ABC)易陷入局部最优、收敛速度慢等问题,提出一种改进的人工蜂群算法(IABC)来优化LSSVR的参数并进行变形预测研究。首先,IABC算法利用反向学习策略生成正反2个种群来增加初始群体的多样性,一次迭代后对双种群的当前最优食物源进行信息交换以实现优中选优,并设计食物源自适应权重函数及适应度自适应选择函数平衡ABC的勘探和开发能力;其次,以LSSVR的预测精度为目标函数,并将其转化为IABC的适应度函数,以此构建出基于IABC优化LSSVR的预测模型;最后,以基坑监测数据为例,将IABC优化的LSSVR模型、ABC优化的LSSVR模型以及基于PSO的组合模型进行预测对比分析。结果表明,IABC增加了种群的多样性,提高了收敛精度,基于IABC优化的LSSVR模型预测的变形趋势更符合实际,预测精度高于对比模型。 展开更多
关键词 改进的人工蜂群算法 反向学习策略 自适应权重函数 自适应选择函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部