期刊文献+
共找到1,934篇文章
< 1 2 97 >
每页显示 20 50 100
基于自适应遗传粒子群优化模糊神经网络的疲劳驾驶预测模型 被引量:7
1
作者 孙伟 张小瑞 +2 位作者 唐慧强 夏旻 张为公 《汽车工程》 EI CSCD 北大核心 2013年第3期219-223,228,共6页
为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型。根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数。利用疲劳驾驶实车模拟... 为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型。根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数。利用疲劳驾驶实车模拟实验获得的数据,对该模型进行了训练和测试,并将结果与传统的粒子群、遗传和反向传播算法进行对比。结果表明,该模型不仅精简了网络结构,缩短了训练时间,而且减小了全局误差,提高了预测精度。 展开更多
关键词 疲劳驾驶 减法聚类 自适应遗传粒子群优化 模糊神经网络
下载PDF
邻域自适应粒子群算法求解地源热泵区域能源系统鲁棒优化调度问题
2
作者 吴亮红 王维 +1 位作者 张红强 贾睿 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1089-1100,共12页
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为... 针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 展开更多
关键词 地源热泵 鲁棒优化调度 邻域自适应 粒子优化 不确定性
下载PDF
基于自适应混合粒子群算法优化支持向量机的乳腺癌预测
3
作者 王勇 吴慕云 《阜阳职业技术学院学报》 2024年第2期67-70,共4页
使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之... 使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之后,80%的数据用于模型的训练,剩余20%用于模型的测试。每次实验分别按照比例随机生成的训练集和测试集进行20次预测,计算平均正确率。实验表明,自适应混合粒子群算法优化精度高于标准粒子群算法和鲸鱼算法。 展开更多
关键词 乳腺癌 支持向量机 自适应 粒子优化算法
下载PDF
基于改进自适应多种群遗传算法的结构-控制系统一体化优化 被引量:2
4
作者 梅真 龚嘉诚 +2 位作者 高毅超 魏琳 李海锋 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期799-809,共11页
提出一种改进的自适应多种群遗传算法,以更好地解决建筑结构-主动控制系统一体化优化问题,即同时对被控结构参数、控制算法参数、主动作动器布置位置进行优化。该遗传算法对编码方法、初始种群生成、选择策略、交叉概率和变异概率的自... 提出一种改进的自适应多种群遗传算法,以更好地解决建筑结构-主动控制系统一体化优化问题,即同时对被控结构参数、控制算法参数、主动作动器布置位置进行优化。该遗传算法对编码方法、初始种群生成、选择策略、交叉概率和变异概率的自适应调整、多种群协同进化中移民策略等进行改进。研究结果表明:改进的自适应多种群遗传算法和改进的基本遗传算法优化结果总体一致,表明前者分析结果是正确的,并且具有较高的精度;改进的自适应多种群遗传算法和改进的基本遗传算法首次得到优化分析最优解的平均进化代数分别为320与730,表明前者比后者收敛速度更快;改进的自适应多种群遗传算法每次能达到或接近最优解,可有效克服基本遗传算法优化结果随机性较强的缺点;经改进的自适应多种群遗传算法优化的主动控制系统取得明显减振效果,E1 Centro波输入时,主动控制结构层间位移角峰值和绝对加速度峰值较无控时分别平均减小54.5%与46.7%。算例结果表明了改进的自适应多种群遗传算法的有效性,实现了对建筑结构-主动控制系统的一体化优化。 展开更多
关键词 主动控制 结构-控制系统 一体化优化 自适应遗传算法 多种
下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:2
5
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用
6
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
下载PDF
基于粒子群-遗传混合算法的深沟球轴承优化设计
7
作者 叶帅 余江鸿 +2 位作者 姚齐水 唐嘉昌 李睿 《湖南工业大学学报》 2024年第1期32-39,共8页
为了提高深沟球轴承的服役性能,提出一种基于粒子群-遗传混合算法的优化设计方法。其以额定动载荷和额定静载荷为目标函数,以滚动体直径、节圆直径、滚动体数目和内外圈滚道沟曲率半径系数为设计变量,基于粒子群算法,引入罚函数和遗传... 为了提高深沟球轴承的服役性能,提出一种基于粒子群-遗传混合算法的优化设计方法。其以额定动载荷和额定静载荷为目标函数,以滚动体直径、节圆直径、滚动体数目和内外圈滚道沟曲率半径系数为设计变量,基于粒子群算法,引入罚函数和遗传交叉、变异操作,解决带约束优化问题求解和局部最优问题。并以6206型轴承为算例,对优化后的轴承进行应力分析和敏感度分析。结果表明,所提出算法的收敛性能较好、优化能力较强、运算速度较快,优化后的深沟球轴承接触应力下降了31.7%,从而验证了所提出方法的有效性。 展开更多
关键词 深沟球轴承 服役性能 粒子-遗传混合算法 优化设计 应力分析
下载PDF
自适应粒子群算法汽车传动系统参数优化匹配
8
作者 吴素珍 郑群雄 毕建平 《机械设计与制造》 北大核心 2024年第12期51-55,共5页
为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引... 为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引入加权系数法和罚函数,建立了多工况下整车传动系统的参数优化模型。为提高传动系参数的匹配程度,提出一种基于动态学习因子和自适应调节惯性权重策略下的改进自适应粒子群优化算法,获得整车传动系统参数的最优集。仿真结果表明,改进后的算法收敛速度快,更具“活”性,很好地避免了算法的“早熟收敛”,较传统的自适应算法而言,在六循环工况下的百公里油耗减少了1.5%,(0~100)km/h加速时间缩短了2.3%,最高车速也提高了0.53%,这些结果都充分验证了改进的自适应粒子群算法的可靠性和有效性。 展开更多
关键词 传动系参数 自适应粒子算法 仿真 参数优化匹配
下载PDF
基于改进自适应粒子群优化的高压设备检修计划自适应优化
9
作者 毛德拥 曹涛 《微型电脑应用》 2024年第8期203-206,共4页
为了保证电网在高压设备检修过程中的稳定运行,提出基于改进自适应粒子群优化算法的高压设备检修计划自适应优化方法。采用模糊推理规则算法评估高压设备运行状态,依据评估结果确定电网运行风险最小化为高压设备检修优化的目标函数,并... 为了保证电网在高压设备检修过程中的稳定运行,提出基于改进自适应粒子群优化算法的高压设备检修计划自适应优化方法。采用模糊推理规则算法评估高压设备运行状态,依据评估结果确定电网运行风险最小化为高压设备检修优化的目标函数,并确定同时约束、检修资源约束等5个约束条件,采用改进自适应粒子群优化求解目标函数,输出优化后的高压设备检修计划结果。测试结果显示,该方法检修时电压最大和最小结果之间的差距为0.105 pu,较为平稳。 展开更多
关键词 改进自适应粒子优化 高压设备 检修计划 自适应调节 电网运行风险
下载PDF
基于遗传粒子群算法的水闸底板优化设计
10
作者 刘峰 《水电站机电技术》 2024年第3期46-48,104,共4页
为获得最佳的水闸底板设计方案,降低建造材料用量,对水闸底板尺寸进行优化设计。首先,以水闸底板总截面积为目标函数,底板抗滑稳定、底板基底应力为约束条,以底板尺寸为优化变量建立水闸底板尺寸优化数学模型;其次,提出了一种耦合粒子... 为获得最佳的水闸底板设计方案,降低建造材料用量,对水闸底板尺寸进行优化设计。首先,以水闸底板总截面积为目标函数,底板抗滑稳定、底板基底应力为约束条,以底板尺寸为优化变量建立水闸底板尺寸优化数学模型;其次,提出了一种耦合粒子群优化算法和遗传算法的遗传粒子群算法,用于优化求解水闸底板尺寸优化数学模型。选取狮子山水闸为分析对象,计算结果表明:遗传粒子群算法对狮子山水闸底板尺寸的优化率为11.44%,其对于狮子山水闸底板尺寸的优化效率明显优于粒子群优化算法和遗传算法。 展开更多
关键词 水闸底板 优化设计 遗传粒子算法 粒子优化算法 遗传算法
下载PDF
基于改进粒子群算法的燃煤电厂经济调度自适应优化方法
11
作者 陈利 李华东 李志勇 《自动化应用》 2024年第20期151-152,158,共3页
经济调度优化关乎电厂的经济效益,为此,提出基于改进粒子群算法的燃煤电厂经济调度自适应优化方法,旨在最大化电厂经济效益、最小化发电成本,并设定相关约束条件,通过自适应调整粒子群算法参数,改进算法迭代求解模型,获得最优经济调度... 经济调度优化关乎电厂的经济效益,为此,提出基于改进粒子群算法的燃煤电厂经济调度自适应优化方法,旨在最大化电厂经济效益、最小化发电成本,并设定相关约束条件,通过自适应调整粒子群算法参数,改进算法迭代求解模型,获得最优经济调度策略。实际应用显示,该方法有效提升了电厂经济收益,减少了污染物排放,具有良好的优化效果。 展开更多
关键词 改进粒子算法 燃煤电厂 经济调度 自适应优化
下载PDF
基于自适应遗传-粒子群优化算法的风电场微观选址优化 被引量:7
12
作者 徐佳楠 张天瑞 李玉龙 《科学技术与工程》 北大核心 2023年第16期6917-6922,共6页
为了减小尾流效应对风电场发电量的影响,提高风能利用率,提出了一种自适应权重的遗传-粒子群优化算法(genetic-particle swarm optimization algorithm,GA-PSO)。首先,以风电场单位发电成本为目标函数,风机坐标为优化变量,通过在优化变... 为了减小尾流效应对风电场发电量的影响,提高风能利用率,提出了一种自适应权重的遗传-粒子群优化算法(genetic-particle swarm optimization algorithm,GA-PSO)。首先,以风电场单位发电成本为目标函数,风机坐标为优化变量,通过在优化变量的速度更新中加入惯性权重,以改变算法的寻优速度;其次,在WASP软件选址的基础上,对风电机组进行布局优化;进而,将计算结果与遗传算法(genetic algorithm,GA)、萤火虫算法(firefly algorithm,FA)和粒子群(particle swarm algorithm,PSO)优化算法进行对比。结果表明:运用PGOA算法优化后的风电场单位发电成本为2016元/GWh,减少了232元/GWh,年发电量为82.633 GWh,比优化前提高了8.538 GWh,同时尾流损失减小了1.12%。可见研究结论对未来的风电场微观选址具有一定指导意义。 展开更多
关键词 风电场 微观选址 尾流效应 布局优化 风电成本 自适应权重 遗传-粒子优化算法(GA-PSO)
下载PDF
基于自适应混沌粒子群优化算法的多目标无功优化 被引量:79
13
作者 李娟 杨琳 +2 位作者 刘金龙 杨德龙 张晨 《电力系统保护与控制》 EI CSCD 北大核心 2011年第9期26-31,共6页
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功... 针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 展开更多
关键词 自适应 混沌粒子优化算法 无功优化 惯性权重
下载PDF
基于遗传交叉因子的改进粒子群优化算法 被引量:34
14
作者 李季 孙秀霞 +1 位作者 李士波 李睿 《计算机工程》 CAS CSCD 北大核心 2008年第2期181-183,共3页
提出一种基于遗传交叉因子的改进粒子群优化算法,通过自适应变化惯性权重来改善算法的收敛性能,借鉴遗传算法中的选择交叉操作增加粒子多样性,通过引入交叉因子增强群体粒子的优良特性,减小了算法陷入局部极值的可能。对几个典型的测试... 提出一种基于遗传交叉因子的改进粒子群优化算法,通过自适应变化惯性权重来改善算法的收敛性能,借鉴遗传算法中的选择交叉操作增加粒子多样性,通过引入交叉因子增强群体粒子的优良特性,减小了算法陷入局部极值的可能。对几个典型的测试函数进行仿真表明,该算法较标准粒子群优化算法(PSO)提高了全局搜索能力和收敛速度,改善了优化性能。 展开更多
关键词 粒子优化算法 交叉因子 演化计算 适应 遗传算法
下载PDF
基于自适应网格的多目标粒子群优化算法 被引量:29
15
作者 杨俊杰 周建中 +2 位作者 方仍存 李英海 刘力 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5843-5847,共5页
针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜... 针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜索技术;删除非劣解集集中品质差的多余粒子以维持非劣解集在一定规模的基于AGA的非劣解集截断技术。仿真计算表明,和文献中典型的多目标进化算法比较,AGA-MOPSO算法在求解复杂大规模优化问题方面表现了良好的性能。 展开更多
关键词 多目标 优化 粒子优化 自适应网格算法
下载PDF
多目标无功优化的向量评价自适应粒子群算法 被引量:80
16
作者 刘佳 李丹 +1 位作者 高立群 宋立新 《中国电机工程学报》 EI CSCD 北大核心 2008年第31期22-28,共7页
为了克服粒子群算法在高维复杂问题寻优时有相当可能陷入局部寻优的现象,提出了一种自适应粒子群算法。该算法利用种群多样性信息对惯性权重进行非线性的调整,并在算法的后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局... 为了克服粒子群算法在高维复杂问题寻优时有相当可能陷入局部寻优的现象,提出了一种自适应粒子群算法。该算法利用种群多样性信息对惯性权重进行非线性的调整,并在算法的后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优点的束缚。对基于向量评价的粒子群算法进行了扩展,提出了基于向量评价的自适应粒子群算法(vector evaluated adaptive particle swarm optimization,VEAPSO)来解决多目标无功优化问题,求解出问题的Pareto最优解集。为帮助决策者从Pareto最优解集中选取合适的最优解,该文提出一种基于决策者偏好及投影寻踪模型的多属性决策法,使决策结果更加真实可靠。将该算法应用于多目标无功优化问题中,IEEE30和IEEE118节点系统算例仿真表明该方法用于解决多目标无功优化问题是有效可行的。 展开更多
关键词 自适应 粒子算法 向量评价 多目标 无功优化 投影寻踪
下载PDF
基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化 被引量:64
17
作者 田文奇 和敬涵 +2 位作者 姜久春 牛利勇 王小君 《电网技术》 EI CSCD 北大核心 2012年第11期25-29,共5页
大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据... 大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据换电站的特点以换电站各时刻的充电功率为控制对象,建立多目标的调度策略数学模型,并采用自适应变异的粒子群算法求解以减小标准粒子群容易早熟对优化结果的影响,得到次日优化充电计划。基于某地区负荷曲线进行算例仿真,验证了算法的有效性,比较了单目标优化和多目标优化的调度策略对负荷曲线的影响。结果表明,换电站充电调度策略采用多目标优化时能够克服单目标优化填充"最低谷"效果差的问题,有效地降低电网峰谷差,达到平稳负荷波动的效果。 展开更多
关键词 电动汽车 换电池站 充电调度 多目标优化 自适应变异的粒子优化算法
下载PDF
粒子群优化算法及其与遗传算法的比较 被引量:90
18
作者 沈艳 郭兵 古天祥 《电子科技大学学报》 EI CAS CSCD 北大核心 2005年第5期696-699,共4页
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题。该文讨论粒子群优化算法的基本原理和实现步骤,分析了该算法中各参数的设置。通过一个测试函数,对粒子群优化算法与遗传算法进行了比较,结果表明粒子群... 粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题。该文讨论粒子群优化算法的基本原理和实现步骤,分析了该算法中各参数的设置。通过一个测试函数,对粒子群优化算法与遗传算法进行了比较,结果表明粒子群优化算法在找寻最优解效率上好于遗传算法。 展开更多
关键词 集智能 粒子 遗传算法 优化
下载PDF
基于反馈策略的自适应粒子群优化算法 被引量:29
19
作者 俞欢军 张丽平 +1 位作者 陈德钊 胡上序 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第9期1286-1291,共6页
为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探... 为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探和开发能力.基于惯性权值随种群多样性变化而变化的动态分析,建立了惯性权值与平均粒距之间的线性函数关系,并将该函数关系融入到APSO算法中.测试结果表明,与常规粒子群优化算法相比,该算法在多峰雨数寻优时,成功率和精确度都有显著提高,且全局收敛速度快;在求解异或(XOR)分类问题时成功概率提高,收敛速度加快,APSO算法对神经网络的训练更加有效. 展开更多
关键词 早熟 自适应算法 粒子优化
下载PDF
粒子群优化小波自适应阈值法用于局部放电去噪 被引量:31
20
作者 江天炎 李剑 +2 位作者 杜林 王有元 杨丽君 《电工技术学报》 EI CSCD 北大核心 2012年第5期77-83,共7页
为了提高局部放电在线监测中小波去噪的自适应能力,并降低去噪信号的畸变率,提出了一种用于电力设备局部放电信号去噪的粒子群优化小波自适应阈值方法。该方法采用小波对局部放电信号进行分解,在阈值选择时采用基于SURE无偏估计的最优... 为了提高局部放电在线监测中小波去噪的自适应能力,并降低去噪信号的畸变率,提出了一种用于电力设备局部放电信号去噪的粒子群优化小波自适应阈值方法。该方法采用小波对局部放电信号进行分解,在阈值选择时采用基于SURE无偏估计的最优阈值自适应选择方法,结合粒子群优化算法进行全局自适应搜索最优阈值,使最优阈值自适应寻优速度大大提高。为了验证其去噪效果,还引入遗传算法对小波自适应阈值法进行优化计算。对局部放电仿真信号与实测局部放电信号的去噪结果表明,本文与标准软阈值法和遗传算法优化小波自适应阈值法相比,能更好地去除局部放电信号中的白噪声,计算速度更快,具有良好的去噪效果和应用价值。 展开更多
关键词 局部放电 在线监测 小波去噪 自适应阈值 粒子优化算法
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部