由于河流图像中常常存在光学噪音,且水污染分布呈现出复杂和多变的特征,使得特征获取难度较大。为此,提出一种城市周边流域河流有机污染物分布特征提取方法。采用自适应边缘相似度非局部均值(Adaptive Non-local Means Denoising with E...由于河流图像中常常存在光学噪音,且水污染分布呈现出复杂和多变的特征,使得特征获取难度较大。为此,提出一种城市周边流域河流有机污染物分布特征提取方法。采用自适应边缘相似度非局部均值(Adaptive Non-local Means Denoising with Edge Similarity, ANLM-ES)图像去噪方法,利用两个像素之间的高斯加权距离,获取复合图像块相似性权重函数,通过加权平均,经过计算确定中心像素,将图像去噪处理。分割城市周边流域河流图像,通过最小二乘法确定偏析线方向,采用拟合直线投影图像像素点,根据城市周边流域河流有机污染物分布特征,实现不同特征提取。通过仿真分析表明,所提方法去噪均方误差仅为0.025,可以获取良好的城市周边流域河流有机污染物分布特征提取结果。展开更多
Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures o...Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.展开更多
文摘由于河流图像中常常存在光学噪音,且水污染分布呈现出复杂和多变的特征,使得特征获取难度较大。为此,提出一种城市周边流域河流有机污染物分布特征提取方法。采用自适应边缘相似度非局部均值(Adaptive Non-local Means Denoising with Edge Similarity, ANLM-ES)图像去噪方法,利用两个像素之间的高斯加权距离,获取复合图像块相似性权重函数,通过加权平均,经过计算确定中心像素,将图像去噪处理。分割城市周边流域河流图像,通过最小二乘法确定偏析线方向,采用拟合直线投影图像像素点,根据城市周边流域河流有机污染物分布特征,实现不同特征提取。通过仿真分析表明,所提方法去噪均方误差仅为0.025,可以获取良好的城市周边流域河流有机污染物分布特征提取结果。
基金supported by the National Natural Science Foundation of China(No.41074075)National Science and Technology Project(SinoProbe-03)+1 种基金National public industry special subject(No. 201011047-02)Graduate Innovation Fund of Jilin University(No. 20121070)
文摘Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.