自适应OFDM(Orthogonal Frequency Division Multiplexing)系统根据信道情况自适应地分配各个子载波发送的比特和功率,在频率选择性衰落信道条件下,它比传统的OFDM系统有更好的误比特性能。提出了一种基于MMSE准则的自适应预处理算法,...自适应OFDM(Orthogonal Frequency Division Multiplexing)系统根据信道情况自适应地分配各个子载波发送的比特和功率,在频率选择性衰落信道条件下,它比传统的OFDM系统有更好的误比特性能。提出了一种基于MMSE准则的自适应预处理算法,并将该算法应用于自适应OFDM系统,与基于最大信息速率设计的自适应OFDM系统相比,误比特性能有了显著提高。展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
Dynamic simulation is one of the most complex and important computations for power systems researches.Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes,which...Dynamic simulation is one of the most complex and important computations for power systems researches.Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes,which increases the programming complexity of and limits the parallelizability of the whole simulation.In this paper,a new adaptive preconditioned Jacobian-free Newton-GMRES(m)method is proposed to be applied to dynamic simulations of power systems.This new method has totally Jacobian-free characteristics,which saves calculations and storages of Jacobian matrixes and features strong parallelizability.Moreover,several speedup strategies are introduced to enhance efficiency and parallelizability of overall computations.Numerical tests are carried out on IEEE standard test systems and results show that in series computing environment,simulations based on the proposed method have comparable speed to those based on classical Newton-Raphson methods.展开更多
文摘自适应OFDM(Orthogonal Frequency Division Multiplexing)系统根据信道情况自适应地分配各个子载波发送的比特和功率,在频率选择性衰落信道条件下,它比传统的OFDM系统有更好的误比特性能。提出了一种基于MMSE准则的自适应预处理算法,并将该算法应用于自适应OFDM系统,与基于最大信息速率设计的自适应OFDM系统相比,误比特性能有了显著提高。
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277104 and 51207076)the National High-Tech Research & Development Program of China ("863" Program) (Grant No.2012AA050217)+1 种基金the Postdoctoral Science Foundation of China (Grant No.2012M510441)Tsinghua University Initiative Scientific Research Program (Grant No. 20121087926)
文摘Dynamic simulation is one of the most complex and important computations for power systems researches.Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes,which increases the programming complexity of and limits the parallelizability of the whole simulation.In this paper,a new adaptive preconditioned Jacobian-free Newton-GMRES(m)method is proposed to be applied to dynamic simulations of power systems.This new method has totally Jacobian-free characteristics,which saves calculations and storages of Jacobian matrixes and features strong parallelizability.Moreover,several speedup strategies are introduced to enhance efficiency and parallelizability of overall computations.Numerical tests are carried out on IEEE standard test systems and results show that in series computing environment,simulations based on the proposed method have comparable speed to those based on classical Newton-Raphson methods.