期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于自适应预滤波的扬声器系统频响均衡方法 被引量:2
1
作者 马登永 柴国强 +1 位作者 周建明 杨军 《电声技术》 2014年第10期16-18,29,共4页
为了改善由功率放大器及扬声器单元所组成系统整体的频响缺陷性,提出了基于自适应预滤波的扬声器系统频响均衡方法,利用声源信号和反馈信号通过自适应迭代算法依次计算出级联的预滤波器响应,并通过预滤波器对系统频响缺陷进行实时的补... 为了改善由功率放大器及扬声器单元所组成系统整体的频响缺陷性,提出了基于自适应预滤波的扬声器系统频响均衡方法,利用声源信号和反馈信号通过自适应迭代算法依次计算出级联的预滤波器响应,并通过预滤波器对系统频响缺陷进行实时的补偿处理,以达到逆滤波均衡效果。 展开更多
关键词 扬声器系统 非线性失真 自适应预滤波 声源信号
下载PDF
多小波图像变换的自适应预滤波 被引量:1
2
作者 王玲 王卫卫 宋国乡 《电子与信息学报》 EI CSCD 北大核心 2001年第10期949-953,共5页
该文基于多小波分解高通能量的极小化,提出了一种计算量小、实现简单的自适应预滤波方法,并将其推广到二维图像,对行与列分别处理,实现了图像的自适应预滤波,使恢复图像质量的整体效果变好。实验结果表明,利用本文提出的自适应预滤波方... 该文基于多小波分解高通能量的极小化,提出了一种计算量小、实现简单的自适应预滤波方法,并将其推广到二维图像,对行与列分别处理,实现了图像的自适应预滤波,使恢复图像质量的整体效果变好。实验结果表明,利用本文提出的自适应预滤波方法进行图像压缩明显优于现有的其它预滤波器。 展开更多
关键词 自适应预滤波 图像压缩 图像变换
下载PDF
机载雷达空时三维非自适应预滤波方法 被引量:6
3
作者 虞泓波 冯大政 +2 位作者 曹杨 么晓坤 解虎 《电子与信息学报》 EI CSCD 北大核心 2014年第1期215-219,共5页
该文提出一种机载雷达空时3维非自适应预滤波方法。利用可提前确定的载机偏航角、脉冲重复频率、阵元间距等雷达系统和载机平台信息,通过分析阵元在相邻两脉冲采样数据的结构,设计了一种空时3维非自适应滤波器,先滤除大部分杂波,使得剩... 该文提出一种机载雷达空时3维非自适应预滤波方法。利用可提前确定的载机偏航角、脉冲重复频率、阵元间距等雷达系统和载机平台信息,通过分析阵元在相邻两脉冲采样数据的结构,设计了一种空时3维非自适应滤波器,先滤除大部分杂波,使得剩余少部分杂波在降维自适应处理时能被充分抑制,提高了动目标检测性能。理论分析和仿真实验表明,该预滤波方法对载机偏航具有兼容性,能大大降低杂波自由度,在整个杂波区都有一定的性能改善,尤其在主瓣杂波区性能改善明显。 展开更多
关键词 机载雷达 动目标检测 空时3维 自适应预滤波
下载PDF
一种自适应多子波预滤波器的设计
4
作者 杨新星 焦李成 《电子与信息学报》 EI CSCD 北大核心 2001年第11期1056-1060,共5页
该文设计了一种自适应多子波预滤波器,解决了由于多子波的尺度函数不具有低通特性而带来的离散多子波变换的初始化问题。分析和实验结果表明了预滤波算法具有良好的逼近性能。
关键词 自适应预滤波 多子波变换 多尺度函数 电路设计
下载PDF
基于遗传算法的OBSA多小波预滤波器 被引量:2
5
作者 杨建波 陈贺新 +1 位作者 张应省 顼鹏飞 《计算机工程与应用》 CSCD 北大核心 2003年第34期44-46,共3页
OBSA多小波对前置滤波器选取具有任意性。论文提出了一种基于遗传算法的OBSA多小波预滤波器构造方法。根据图像分解和重构的不同目的选择适应度函数,在适当的约束条件下,实现图像多小波变换的自适应预滤波。若图像多小波变换的目的是进... OBSA多小波对前置滤波器选取具有任意性。论文提出了一种基于遗传算法的OBSA多小波预滤波器构造方法。根据图像分解和重构的不同目的选择适应度函数,在适当的约束条件下,实现图像多小波变换的自适应预滤波。若图像多小波变换的目的是进行图像压缩,据此选择适应度函数,通过遗传算法方法,对不同的图像,自适应地得到前置滤波器,实验结果表明,利用此前置滤波器进行图像压缩,可以提高图像压缩比。若图像变换的目的是进行图像放大,通过文中介绍的方法,也可自适应地得到前置滤波器,放大后的图像质量较其它方法有明显的提高。 展开更多
关键词 0BSA多小波 自适应预滤波 遗传算法 图像压缩 图像放大
下载PDF
基于遗传算法的CL多小波预滤波器 被引量:2
6
作者 杨建波 陈贺新 李迎春 《吉林大学学报(信息科学版)》 CAS 2003年第4期352-356,共5页
提出了一种基于遗传算法的CL多小波预滤波器构造方法。该方法根据图像分解和重构的不同目的及不同的约束条件,定义相应的适应度函数;采用遗传算法对不同的图像,进行滤波器的自适应优化;得到相对应的前置滤波器,实现了图像多小波变换的... 提出了一种基于遗传算法的CL多小波预滤波器构造方法。该方法根据图像分解和重构的不同目的及不同的约束条件,定义相应的适应度函数;采用遗传算法对不同的图像,进行滤波器的自适应优化;得到相对应的前置滤波器,实现了图像多小波变换的自适应预滤波。对图像压缩和图像放大两种情况进行了实验仿真,证实了该方法的可行性和有效性。计算机仿真结果表明,利用此方法得到的前置滤波器进行图像压缩,可提高图像压缩比;若利用对应的前置滤波器进行图像放大,则图像质量较其他方法有明显提高:放大后图像的均方误差,较线性插值法降低了48%,较加权抛物线法降低了31%。 展开更多
关键词 多小波变换 自适应预滤波 遗传算法 图像压缩 图像放大
下载PDF
组合声源管路信号失真的自适应修正方法研究 被引量:1
7
作者 刘志恩 魏浩钦 +1 位作者 朱亚伟 杨星瑶 《声学技术》 CSCD 北大核心 2022年第1期82-87,共6页
针对使用外置声源模拟汽车进气、排气噪声进行空气声传递路径分析的试验中,现有低频声源无法发出进排气时频率为30 Hz的低频噪声,同时由于低频声源体积过大需要过渡管道才能将噪声信号传输至排气尾管。为了解决声源系统引入过渡管道带... 针对使用外置声源模拟汽车进气、排气噪声进行空气声传递路径分析的试验中,现有低频声源无法发出进排气时频率为30 Hz的低频噪声,同时由于低频声源体积过大需要过渡管道才能将噪声信号传输至排气尾管。为了解决声源系统引入过渡管道带来的声阻抗变化,提出了一种自适应预滤波的噪声修正方法。该方法采用最小均方误差自适应算法对系统逆传递函数进行拟合,得到最佳滤波器系数,通过构建有限脉冲响应滤波器实现对组合声源系统信号失真的修正。仿真结果表明,与维纳滤波方法相比,该方法实现了信号在30~1000 Hz频段范围内±5 dB的幅值波动,管口噪声信号输出稳定。基于NI Compact RIO搭建了滤波器并进行测试,试验的噪声频谱曲线与仿真结果吻合度较高,证明了该方法的有效性。 展开更多
关键词 组合声源 过渡管道 自适应预滤波 传递损失 逆传递函数
下载PDF
Adaptive load forecasting of the Hellenic electric grid 被引量:1
8
作者 S.Sp.PAPPAS L.EKONOMOU +2 位作者 V.C.MOUSSAS P.KARAMPELAS S.K.KATSIKAS 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第12期1724-1730,共7页
Designers are required to plan for future expansion and also to estimate the grid's future utilization. This means that an effective modeling and forecasting technique, which will use efficiently the information c... Designers are required to plan for future expansion and also to estimate the grid's future utilization. This means that an effective modeling and forecasting technique, which will use efficiently the information contained in the available data, is required, so that important data properties can be extracted and projected into the future. This study proposes an adaptive method based on the multi-model partitioning algorithm (MMPA), for short-term electricity load forecasting using real data. The grid's utilization is initially modeled using a multiplicative seasonal ARIMA (autoregressive integrated moving average) model. The proposed method uses past data to learn and model the normal periodic behavior of the electric grid. Either ARMA (autoregressive moving average) or state-space models can be used for the load pattern modeling. Load anomalies such as unexpected peaks that may appear during the summer or unexpected faults (blackouts) are also modeled. If the load pattern does not match the normal be-havior of the load, an anomaly is detected and, furthermore, when the pattern matches a known case of anomaly, the type of anomaly is identified. Real data were used and real cases were tested based on the measurement loads of the Hellenic Public Power Cooperation S.A., Athens, Greece. The applied adaptive multi-model filtering algorithm identifies successfully both normal periodic behavior and any unusual activity of the electric grid. The performance of the proposed method is also compared to that produced by the ARIMA model. 展开更多
关键词 Adaptive multi-model filtering ARIMA Load forecasting Measurements Kalman filter Order selection SEASONALVARIATION Parameter estimation
下载PDF
Short-term traffic flow online forecasting based on kernel adaptive filter 被引量:1
9
作者 LI Jun WANG Qiu-li 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第4期326-334,共9页
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive... Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow. 展开更多
关键词 traffic flow forecasting kernel adaptive filtering (KAF) kernel least mean square (KLMS) kernel recursive least square (KRLS) online forecasting
下载PDF
PRECONDITIONED METHODS FOR SPACE-TIME ADAPTIVE PROCESSING
10
作者 Zhang Zenghui Hu Weidong Yu Wenxian 《Journal of Electronics(China)》 2008年第4期465-470,共6页
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant... This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF. 展开更多
关键词 Conjugate gradient method Multistage Wiener filter PRECONDITIONER Space-Time Adaptive Processing (STAP)
下载PDF
MODELING AND FORECASTING OF STOCK MARKETS UNDER A SYSTEM ADAPTATION FRAMEWORK 被引量:1
11
作者 Xiaolian ZHENG Ben M.CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第4期641-674,共34页
This paper adopts the concept of dynamic feedback systems to model the behavior of financial markets, or more specifically, the stock market from a dynamic system point of view. Based on a feedback adaptation scheme, ... This paper adopts the concept of dynamic feedback systems to model the behavior of financial markets, or more specifically, the stock market from a dynamic system point of view. Based on a feedback adaptation scheme, the authors model the movement of a stock market index within a framework that is composed of an internal dynamic model and an adaptive filter. The output-error model is adopted as the internal model whereas the adaptive filter is a time-varying state space model with instrumental variables. Its input-output behavior, and internal as well as external forces are then identified. Special attention has also been paid to the recent financial crisis by examining the movement of Dow Jones Industrial Average (DJIA) as an example to illustrate the advantage of the proposed framework. Supported by time-varying causality tests, five influential factors from economic and sentiment aspects are introduced as the input of this framework. Testing results show that the proposed framework has a much better prediction performance than the existing methods, especially in complicated economic situations. An application of this framework is also presented with focuses on forecasting the turning periods of the market trend. Realizing that a market trend is about to change when the external force begins to exhibit clear patterns in its frequency responses, the authors develop a set of rules to recognize this kind of clear patterns. These rules work well for stock indexes from US, China and Singapore. 展开更多
关键词 Complex systems financial modeling financial systems market forecasting system economics.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部