-
题名面向分类错误率的自适应FAST算法
被引量:1
- 1
-
-
作者
任胜兵
谢如良
-
机构
中南大学软件学院
-
出处
《小型微型计算机系统》
CSCD
北大核心
2018年第11期2508-2513,共6页
-
文摘
FAST算法进行特征提取时,如果阈值和半径为非最优值,会出现特征点冗余或者丢失的现象,极大地降低了特征点的提取精度.针对上述问题,本文基于AdaBoost思想,提出了AdaBoost_FAST算法.该算法采用支持向量机作为分类器,当FAST算法中的阈值和半径非最优时,将会导致分类器错误率较高.由此根据分类器错误率计算每组阈值和半径的抽样概率,当错误率越低,其抽样概率越大,所对应的阈值和半径越接近最优值.由抽样概率构成的代价函数可知,经过多次迭代后,如果错误率较小并且无明显变化,则此时选择出的阈值和半径即为最优.实验结果表明,该算法能够有效进行阈值与半径的自适应选择,减少了特征点的冗余和丢失现象,在保证AdaBoost_FAST算法实时性的同时提高了特征点提取精度.
-
关键词
特征点提取
自适应fast算法
错误率
抽样概率
阈值
半径
-
Keywords
feature detection
self-adaptive fast algorithm
error rate
sampling probability
threshold
radius
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-