针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化...针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化的阶比信号,通过阶比信号复包络直接求两种频率分量的幅值、相位,经实验分析这种方法能保留齿轮箱的瞬变信息。而后计算两种频率分量的谱峭度,以最大谱峭度对应的频率带能量与原阶比信号总能量之比作为故障特征,最后采用高斯混合模型对风电机组齿轮箱在不同工况下的150组振动信号进行特征描述,运用最大贝叶斯分类器实现故障识别。故障识别率表明该方法可有效地识别任意时变工况下的齿轮早期局部微弱故障。展开更多
设计了一款新型自适应分数阶比例-积分-微分(AdaptiveFractional-Order Proportional-Integral-Derivative,AFOPID)控制,以实现永磁同步发电机(Permanent Magnetic Synchronous Generator,PMSG)的最大功率追踪(Maximum Power Point Trac...设计了一款新型自适应分数阶比例-积分-微分(AdaptiveFractional-Order Proportional-Integral-Derivative,AFOPID)控制,以实现永磁同步发电机(Permanent Magnetic Synchronous Generator,PMSG)的最大功率追踪(Maximum Power Point Tracking, MPPT)。首先,将发电机非线性、参数不确定性、未建模动态以及随机风速聚合成一个扰动,并通过高增益状态-扰动观测器(High-Gain State and Perturbation Observer, HGSPO)对其在线估计。随后,采用分数阶PID(Fractional-Order Proportional-Integral-Derivative, FOPID)控制对该扰动估计进行完全补偿,以实现不同工况下全局一致的鲁棒控制性能。AFOPID控制较传统PID控制而言具有更出色的MPPT性能,且其无需精确的PMSG模型,仅需测量d轴电流和机械转速,易于实现。通过阶跃风速和随机风速两个算例,对AFOPID的控制性能与PID控制、FOPID控制和反馈线性化控制(Feedback Linearization Control, FLC)进行了对比。仿真结果验证了AFOPID控制的有效性和鲁棒性。展开更多
文摘针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化的阶比信号,通过阶比信号复包络直接求两种频率分量的幅值、相位,经实验分析这种方法能保留齿轮箱的瞬变信息。而后计算两种频率分量的谱峭度,以最大谱峭度对应的频率带能量与原阶比信号总能量之比作为故障特征,最后采用高斯混合模型对风电机组齿轮箱在不同工况下的150组振动信号进行特征描述,运用最大贝叶斯分类器实现故障识别。故障识别率表明该方法可有效地识别任意时变工况下的齿轮早期局部微弱故障。
文摘设计了一款新型自适应分数阶比例-积分-微分(AdaptiveFractional-Order Proportional-Integral-Derivative,AFOPID)控制,以实现永磁同步发电机(Permanent Magnetic Synchronous Generator,PMSG)的最大功率追踪(Maximum Power Point Tracking, MPPT)。首先,将发电机非线性、参数不确定性、未建模动态以及随机风速聚合成一个扰动,并通过高增益状态-扰动观测器(High-Gain State and Perturbation Observer, HGSPO)对其在线估计。随后,采用分数阶PID(Fractional-Order Proportional-Integral-Derivative, FOPID)控制对该扰动估计进行完全补偿,以实现不同工况下全局一致的鲁棒控制性能。AFOPID控制较传统PID控制而言具有更出色的MPPT性能,且其无需精确的PMSG模型,仅需测量d轴电流和机械转速,易于实现。通过阶跃风速和随机风速两个算例,对AFOPID的控制性能与PID控制、FOPID控制和反馈线性化控制(Feedback Linearization Control, FLC)进行了对比。仿真结果验证了AFOPID控制的有效性和鲁棒性。