期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向非球形分布数据的自适应K近邻聚类算法 被引量:3
1
作者 黄晓斌 万建伟 张燕 《计算机工程》 CAS CSCD 北大核心 2003年第11期21-22,165,共3页
针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类... 针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类效果。 展开更多
关键词 非球形分布 模糊C均值聚类算法(FCA) 自适应k近邻聚类算法(AkNNCA)
下载PDF
一种改进的自适应K近邻聚类算法 被引量:2
2
作者 黄晓斌 万建伟 张燕 《计算机工程与应用》 CSCD 北大核心 2004年第15期76-78,130,共4页
为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为... 为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为此,该文给出了一种改进的自适应k近邻聚类算法。仿真结果表明,新算法不仅保持了原算法在处理非球形分布数据时的优良特性,还成功解决了“奇异”样本问题。 展开更多
关键词 非球形分布 模糊C均值聚类算法(FCA) 自适应k近邻聚类算法(AkNNCA)改进自适应k近邻聚类算法(IAkNNCA)
下载PDF
改进K-means聚类的自适应加权K近邻指纹定位算法 被引量:11
3
作者 邬春明 齐森南 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2021年第6期946-954,共9页
针对指纹定位精度易受指纹数据K-means聚类预处理效果不佳、加权K近邻算法采用固定K值进行匹配定位精度差等问题,提出一种基于改进K-means聚类的自适应加权K近邻算法。算法在对指纹数据进行聚类计算过程中充分考虑参考点间接收信号强度... 针对指纹定位精度易受指纹数据K-means聚类预处理效果不佳、加权K近邻算法采用固定K值进行匹配定位精度差等问题,提出一种基于改进K-means聚类的自适应加权K近邻算法。算法在对指纹数据进行聚类计算过程中充分考虑参考点间接收信号强度值与实际物理坐标的双重影响,以避免参考点分类不明确;根据每个测试点的匹配参考点之间实际距离的均值和标准差设置阈值,动态选择K值。实验结果证明,改进K-means聚类的自适应加权K近邻算法相较于传统室内定位算法定位精度提高了44%,可为相关应用提供更精确的定位服务。 展开更多
关键词 WI-FI 指纹定位 坐标相似度 k-MEANS聚类 自适应加权k近邻算法
下载PDF
基于OTT与MR数据的自适应WKNN室外定位方法 被引量:2
4
作者 徐珊珊 余健 王计斌 《江苏通信》 2019年第1期7-11,共5页
随着无线通信技术的快速发展和日趋成熟,基于位置的无线定位服务对于无线通信网络优化分析越来越重要。当GPS不能达到全覆盖时,类似于指纹库的定位技术逐渐产生。本文提出了一种自适应WKNN指纹库定位算法,该算法引入了随机森林算法,计... 随着无线通信技术的快速发展和日趋成熟,基于位置的无线定位服务对于无线通信网络优化分析越来越重要。当GPS不能达到全覆盖时,类似于指纹库的定位技术逐渐产生。本文提出了一种自适应WKNN指纹库定位算法,该算法引入了随机森林算法,计算出每个特征的重要性,并通过丢弃不可靠的参考点进行自适应选择,以提升每个用户定位结果的准确性。整个方法是使用Apache Spark框架实现的,并在运营商的真实数据流上进行测试。结果表明,与TA+AOA和传统的WKNN指纹库定位方法相比,该方法有了显著的改进。 展开更多
关键词 室外定位 指纹库 MR数据 自适应加权k近邻算法 随机森林
下载PDF
基于显著性区域检测的抗干扰车辆颜色识别 被引量:1
5
作者 利齐律 程良伦 黄国恒 《工业控制计算机》 2019年第5期95-96,共2页
在车辆颜色识别的过程中,车辆图像中主要颜色区域的准确分割、排除非颜色干扰区域始终是个问题。因此提出一种基于显著性区域检测的抗干扰车辆颜色识别算法,针对车辆颜色区域分割不准确问题进行一定程度的改善,去除车辆颜色干扰区域并... 在车辆颜色识别的过程中,车辆图像中主要颜色区域的准确分割、排除非颜色干扰区域始终是个问题。因此提出一种基于显著性区域检测的抗干扰车辆颜色识别算法,针对车辆颜色区域分割不准确问题进行一定程度的改善,去除车辆颜色干扰区域并使用自适应k近邻算法(KNN)进行颜色分类。实验结果表明,该方法能有效分割车辆主要颜色区域,并且能达到比较好的分类识别效果。 展开更多
关键词 车辆颜色识别 显著性区域检测 自适应k近邻算法 抗干扰
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部