传统的步态识别方法在处理自遮挡步态识别问题时,通常由于从视频序列中分割出来的轮廓有噪声而不能很好地进行特征提取。为了解决这个问题,提出了基于帧差能量图(Frame Difference Energy Image,FDEI)的遗传算法(Genetic Algorithm,GA)...传统的步态识别方法在处理自遮挡步态识别问题时,通常由于从视频序列中分割出来的轮廓有噪声而不能很好地进行特征提取。为了解决这个问题,提出了基于帧差能量图(Frame Difference Energy Image,FDEI)的遗传算法(Genetic Algorithm,GA),首先采用数学形态学图像处理方法填平轮廓的漏洞并消除噪声,然后借助于步态能量图计算出步态图像的帧差能量图,接着从轮廓图像序列中提取出步态特征,最后,利用遗传算法完成步态的识别。在中科院自动化所-B(CASIA-B)步态数据库上实验验证了所提方法的有效性,实验结果表明,与几种先进的步态方法相比,所提方法在处理自遮挡步态识别问题上取得了更好的识别效果。展开更多
文摘传统的步态识别方法在处理自遮挡步态识别问题时,通常由于从视频序列中分割出来的轮廓有噪声而不能很好地进行特征提取。为了解决这个问题,提出了基于帧差能量图(Frame Difference Energy Image,FDEI)的遗传算法(Genetic Algorithm,GA),首先采用数学形态学图像处理方法填平轮廓的漏洞并消除噪声,然后借助于步态能量图计算出步态图像的帧差能量图,接着从轮廓图像序列中提取出步态特征,最后,利用遗传算法完成步态的识别。在中科院自动化所-B(CASIA-B)步态数据库上实验验证了所提方法的有效性,实验结果表明,与几种先进的步态方法相比,所提方法在处理自遮挡步态识别问题上取得了更好的识别效果。