以俄亥俄州(O h io)的气象、臭氧监测数据为基础,对一个监测点数据进行了分析处理,运用支持向量机回归方法,对气象指标的多参数样本进行学习,获得精确的支持向量机映射关系,并对臭氧含量进行预测.预测结果的误差较小,符合实际情况,能够...以俄亥俄州(O h io)的气象、臭氧监测数据为基础,对一个监测点数据进行了分析处理,运用支持向量机回归方法,对气象指标的多参数样本进行学习,获得精确的支持向量机映射关系,并对臭氧含量进行预测.预测结果的误差较小,符合实际情况,能够较好的解决实际问题,说明支持向量机回归在预测上具有小的结构风险与强的泛化能力.展开更多
文摘以俄亥俄州(O h io)的气象、臭氧监测数据为基础,对一个监测点数据进行了分析处理,运用支持向量机回归方法,对气象指标的多参数样本进行学习,获得精确的支持向量机映射关系,并对臭氧含量进行预测.预测结果的误差较小,符合实际情况,能够较好的解决实际问题,说明支持向量机回归在预测上具有小的结构风险与强的泛化能力.