Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the d...Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the density functional theory. The anisotropic optical properties are investigated by means of the complex dielectric function, which are explained by the selection rule of band-to-band transitions. All the calculation results indicate that the conductivity of Sn2xGa2(1-x)O3 is super to β-Ga2O3, and the calculated results consist with experiments that have been reported.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10974077)the Natural Science Foundation of Shandong Province, China (Grant No. 2009ZRB01702)the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J10LA08)
文摘Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the density functional theory. The anisotropic optical properties are investigated by means of the complex dielectric function, which are explained by the selection rule of band-to-band transitions. All the calculation results indicate that the conductivity of Sn2xGa2(1-x)O3 is super to β-Ga2O3, and the calculated results consist with experiments that have been reported.