Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reaction...Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.展开更多
Frequent occurrences of extreme heat are causing severe ozone pollution over China.This study examined the driving factors of urban ozone pollution in China during the extremely hot summer of 2022 and the impact of em...Frequent occurrences of extreme heat are causing severe ozone pollution over China.This study examined the driving factors of urban ozone pollution in China during the extremely hot summer of 2022 and the impact of emission control strategies using surface measurements and the GEOS-Chem model.The results show that ozone pollution was extremely severe in summer 2022,with a significant rebound by 12-15 ppbv in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan basin(SCB),compared to 2021.Especially over the NCP,the MDA8(maximum daily 8-hourly average)ozone exceeded 160 ppbv,and the number of ozone exceedances was over 42 days.Based on an IPR(integrated process rate)analysis,the authors found that the net chemical production was the dominant factor contributing to the strong ozone increase in summer 2022.For example,in June over the NCP,the net chemical production resulted in an increase by 3.08 Gg d^(−1)(∼270%)in ozone mass change.Sensitivity simulations showed that both NO_(x)(nitrogen oxides)and VOC(volatile organic compound)reductions were important over the NCP,and NO_(x)reductions were more important than VOCs over southern China.To keep the ozone of 2022 at the same level as 2021,a joint reduction of NO_(x)and VOCs by at least 50%-60%would have been required.This study highlights the urgency to develop effective ozone management since extreme heat will become more frequent.展开更多
This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) em...This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.展开更多
Refrigerants used in refrigerators are an important source of ozone depleting substances released into the atmosphere, and can have a significantly negative effect on the hole in the ozone layer. But most emission of ...Refrigerants used in refrigerators are an important source of ozone depleting substances released into the atmosphere, and can have a significantly negative effect on the hole in the ozone layer. But most emission of refrigerants is man-made, unrea-sonable and needless. Since in most emission cases the refrigerants are contained in the refrigerators, we can retrieve them by some technique that changes the 'manual emission' into manual retriev-ing. To promote the retrieval action and diminish the pollution, society can use economic, administrative and technical counter-measures, which can create a 'good-cycle' both 'harnessing pollu-tion and earning income simultaneously', reinforce the motive of retrieving, and retrieve most proportion of refrigerants used by all refrigerators. This 'good-cycle' method can be easily promoted, and also a valuable way to promote other forms of environmental protection. The three countermeasures have almost no social cost, even no cost at all.展开更多
The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above curr...The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above current air quality standard. In this work we studied exhaust and evaporative emissions of Mexico City metropolitan area (MAMC) vehicles using fuels in which sulfur content was varied from 89×10^-6 to 817×10^-6, and calculated the ozone forming potential of emissions as well as the specific reactivity of the exhaust for each average fleet-fuel combinations. Data on emission levels were compared to those obtained in 2000 for the same vintage of vehicles. The almost twofold increase in emissions found could be due to degradation of the exhaust emissions control systems.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 42277095 and 42021004].
文摘Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0136100]the National Natural Science Foundation of China[grant number 42205114].
文摘Frequent occurrences of extreme heat are causing severe ozone pollution over China.This study examined the driving factors of urban ozone pollution in China during the extremely hot summer of 2022 and the impact of emission control strategies using surface measurements and the GEOS-Chem model.The results show that ozone pollution was extremely severe in summer 2022,with a significant rebound by 12-15 ppbv in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan basin(SCB),compared to 2021.Especially over the NCP,the MDA8(maximum daily 8-hourly average)ozone exceeded 160 ppbv,and the number of ozone exceedances was over 42 days.Based on an IPR(integrated process rate)analysis,the authors found that the net chemical production was the dominant factor contributing to the strong ozone increase in summer 2022.For example,in June over the NCP,the net chemical production resulted in an increase by 3.08 Gg d^(−1)(∼270%)in ozone mass change.Sensitivity simulations showed that both NO_(x)(nitrogen oxides)and VOC(volatile organic compound)reductions were important over the NCP,and NO_(x)reductions were more important than VOCs over southern China.To keep the ozone of 2022 at the same level as 2021,a joint reduction of NO_(x)and VOCs by at least 50%-60%would have been required.This study highlights the urgency to develop effective ozone management since extreme heat will become more frequent.
基金supported by the National Natural Science Foundation of China (Grant Nos.90711004 and40825016)the Chinese Academy of Sciences (Grant Nos.KZCX2-YW-Q1 and KZCX2-YW-Q11-03)
文摘This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.
基金supported by the Sci-ence and Technology Bureau of Nangping city,Fujian,China(Grant No.N2006Z01-4)
文摘Refrigerants used in refrigerators are an important source of ozone depleting substances released into the atmosphere, and can have a significantly negative effect on the hole in the ozone layer. But most emission of refrigerants is man-made, unrea-sonable and needless. Since in most emission cases the refrigerants are contained in the refrigerators, we can retrieve them by some technique that changes the 'manual emission' into manual retriev-ing. To promote the retrieval action and diminish the pollution, society can use economic, administrative and technical counter-measures, which can create a 'good-cycle' both 'harnessing pollu-tion and earning income simultaneously', reinforce the motive of retrieving, and retrieve most proportion of refrigerants used by all refrigerators. This 'good-cycle' method can be easily promoted, and also a valuable way to promote other forms of environmental protection. The three countermeasures have almost no social cost, even no cost at all.
文摘The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above current air quality standard. In this work we studied exhaust and evaporative emissions of Mexico City metropolitan area (MAMC) vehicles using fuels in which sulfur content was varied from 89×10^-6 to 817×10^-6, and calculated the ozone forming potential of emissions as well as the specific reactivity of the exhaust for each average fleet-fuel combinations. Data on emission levels were compared to those obtained in 2000 for the same vintage of vehicles. The almost twofold increase in emissions found could be due to degradation of the exhaust emissions control systems.