Serious stretch appears in shallow long offsset signals after NMO correction. In this article we study the generation mechanism of NMO stretch, demonstrate that the conventional travel time equation cannot accurately ...Serious stretch appears in shallow long offsset signals after NMO correction. In this article we study the generation mechanism of NMO stretch, demonstrate that the conventional travel time equation cannot accurately describe the travel time of the samples within the same reflection wavelet. As a result, conventional NMO inversion based on the travel time of the wavelet's central point occurs with errors. In this article, a travel time equation for the samples within the same wavelet is reconstructed through our theoretical derivation (the shifted first arrival point travel time equation), a new NMO inversion method based on the wavelet's first arrival point is proposed. While dealing with synthetic data, the semblance coefficient algorithm equation is modified so that wavelet first arrival points can be extracted. After that, NMO inversion based on the new velocity analysis is adopted on shot offset records. The precision of the results is significantly improved compared with the traditional method. Finally, the block move NMO correction based on the first arrival points travel times is adopted on long offset records and non-stretched results are achieved, which verify the proposed new equation.展开更多
Based on the rainbow-ladder approximation of the Dyson-Schwinger equations and the assumption of the analyticity of the fermion-boson vertex in the neighborhood of zero chemical potential (μ = 0) and neglecting the...Based on the rainbow-ladder approximation of the Dyson-Schwinger equations and the assumption of the analyticity of the fermion-boson vertex in the neighborhood of zero chemical potential (μ = 0) and neglecting the #-dependence of the dressed gluon propagator, we apply the method in [Phys. Rev. C 71 (2005) 015205] of studying the dressed quark propagator at finite chemical potential to prove that the general fermion-boson vertex at finite μ can also be obtained from the one at μ = 0 by a simple shift of variables. Using this result we extend the results of [Phys. Lett. B 420 (1998) 267] to the situation of finite chemical potential and show that under the approximations we have taken, the Gell-Mann Oakes-Renner relation also holds at finite chemical potential展开更多
基金sponsored by the National Natural Science Foundation of China (No. 41074075)
文摘Serious stretch appears in shallow long offsset signals after NMO correction. In this article we study the generation mechanism of NMO stretch, demonstrate that the conventional travel time equation cannot accurately describe the travel time of the samples within the same reflection wavelet. As a result, conventional NMO inversion based on the travel time of the wavelet's central point occurs with errors. In this article, a travel time equation for the samples within the same wavelet is reconstructed through our theoretical derivation (the shifted first arrival point travel time equation), a new NMO inversion method based on the wavelet's first arrival point is proposed. While dealing with synthetic data, the semblance coefficient algorithm equation is modified so that wavelet first arrival points can be extracted. After that, NMO inversion based on the new velocity analysis is adopted on shot offset records. The precision of the results is significantly improved compared with the traditional method. Finally, the block move NMO correction based on the first arrival points travel times is adopted on long offset records and non-stretched results are achieved, which verify the proposed new equation.
基金supported in part by National Natural Science Foundation of China under Grant No.10575050the Research Fund for the Doctoral Program of Higher Education under Grant No.20060284020
文摘Based on the rainbow-ladder approximation of the Dyson-Schwinger equations and the assumption of the analyticity of the fermion-boson vertex in the neighborhood of zero chemical potential (μ = 0) and neglecting the #-dependence of the dressed gluon propagator, we apply the method in [Phys. Rev. C 71 (2005) 015205] of studying the dressed quark propagator at finite chemical potential to prove that the general fermion-boson vertex at finite μ can also be obtained from the one at μ = 0 by a simple shift of variables. Using this result we extend the results of [Phys. Lett. B 420 (1998) 267] to the situation of finite chemical potential and show that under the approximations we have taken, the Gell-Mann Oakes-Renner relation also holds at finite chemical potential