Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different com...Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different commu-nities in the relevant fields,particularly between nuclear physicists and astrophysicists,we have organized the Dialo-gue at the Dream Field(DDF2024).The participants explored topics of various fields such as pulsar astrophysics,transient phenomena,hadronic and nuclear matter,supra-nuclear matter with quark degree of freedom,numerical relativity.This involved discussions on the mechanisms,model constructions,observational impacts,and introduc-tions of new facilities.In-depth exchanges were carried out through invited talks and free discussions,as well as a visit to view the FAST telescope.展开更多
The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on th...The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage.展开更多
Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely lo...Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field.展开更多
The authors establish some uniform estimates for the distance to halfway points of minimalgeodesics in terms of the distantce to end points on some types of Riemannian manifolds, andthen prove some theorems about the ...The authors establish some uniform estimates for the distance to halfway points of minimalgeodesics in terms of the distantce to end points on some types of Riemannian manifolds, andthen prove some theorems about the finite generation of fundamental group of Riemannianmanifold with nonnegative Ricci curvature, which support the famous Milnor conjecture.展开更多
文摘Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different commu-nities in the relevant fields,particularly between nuclear physicists and astrophysicists,we have organized the Dialo-gue at the Dream Field(DDF2024).The participants explored topics of various fields such as pulsar astrophysics,transient phenomena,hadronic and nuclear matter,supra-nuclear matter with quark degree of freedom,numerical relativity.This involved discussions on the mechanisms,model constructions,observational impacts,and introduc-tions of new facilities.In-depth exchanges were carried out through invited talks and free discussions,as well as a visit to view the FAST telescope.
基金Project(2011CB606306)supported by the National Basic Research Program of ChinaProject(FRF-TP-10-003B)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274040)supported by the National Natural Science Foundation of China
文摘The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage.
基金supported by the National Science and Technology Major Project(No.2016ZX05050 and 2017ZX05069)CNPC Major Technology Special Project(No.2016E-0503)
文摘Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field.
基金the National Natural Science Foundation of China(No.19971081).
文摘The authors establish some uniform estimates for the distance to halfway points of minimalgeodesics in terms of the distantce to end points on some types of Riemannian manifolds, andthen prove some theorems about the finite generation of fundamental group of Riemannianmanifold with nonnegative Ricci curvature, which support the famous Milnor conjecture.