In order to determine population genetic structure and pathogenicity of Ustilaginoidea virens in the major rice-growing areas of Anhui Province, total 92 U. virens strains were collected from 28 rice-planting counties...In order to determine population genetic structure and pathogenicity of Ustilaginoidea virens in the major rice-growing areas of Anhui Province, total 92 U. virens strains were collected from 28 rice-planting counties (cities) of Anhui Province. Their genetic diversity was analyzed by using REP-PCR (repetitive extragenic palindromic sequence PCR), and pathogenicity was determined with artificial inoculation method. The results showed that U. virens in rice-growing regions of Anhui Province had a rich genetic diversity. At the similarity level of 0.76, the 92 U. virens strains could be classified into 7 groups. Significant differences were found in pathogenicity among the 24 U. virens strains belonging to different groups, which showed no association with territorial source of U. virens strain or cluster method adopted by this study. Strain pathogenicity and rice varieties showed significant specificity.展开更多
Fasciclin family proteins have been identified as cell adhesion molecules in various organisms. In this study, a novel Magnaporthe oryzae fasciclin-like protein encoding gene, named MoFLP1, was isolated from a subtrac...Fasciclin family proteins have been identified as cell adhesion molecules in various organisms. In this study, a novel Magnaporthe oryzae fasciclin-like protein encoding gene, named MoFLP1, was isolated from a subtractive suppressive cDNA library and functionally analyzed. Sequence analysis showed that the MoFLP1 gene contains an open reading frame (ORF) of 1050 nucleotides encoding 349 amino acids with a calculated molecular weight of 35.85 kDa and a pI of 7.76. The deduced MoFLP1 protein contains a 17-amino acid secretion signal sequence and an 18-amino acid sequence with the characteristics of a glycosylphosphotidylinositol (GPI) anchor additional signal at its N- and C-terminuses, respectively. Potential N-glycosylation sites and domains involving cell adhesion were also identified in MoFLP1. Sequence analysis and subcellular localization by the expression of MoFLP1-GFP fusion construct in M. oryzae indicated that the MoFLP1 protein is probably localized on the vacuole membrane. Two MoFLP1 null mutants generated by targeted gene disruption exhibited marked reduction of conidiation, conidial adhesion, appressorium turgor, and pathogenicity. Our results indicate that fasciclin proteins play important roles in fungal de-velopment and pathogenicity in M. oryzae.展开更多
Escherichia coli(E. coli) DH5α has been recognized as a non-pathogenic bacterial strain with tumor colonization ability. However, whether such a bacteria-driven drug-delivery system can improve the targeting of tumor...Escherichia coli(E. coli) DH5α has been recognized as a non-pathogenic bacterial strain with tumor colonization ability. However, whether such a bacteria-driven drug-delivery system can improve the targeting of tumor therapy or not remains essentially untouched. Herein, a series of zinc phthalocyanine(ZnPc) photosensitizers with different numbers of charges were prepared and their electrostatic adhesion properties on E. coli were investigated via measuring their fluorescence intensities by flow cytometer. Among these ZnPc photosensitizers investigated, the ZnPc conjugate with four positive charges(named ZnPc-IR710) exhibited the highest loading capacity and the best fluorescence imaging performance of E. coli. With the help of E. coli, E. coli@ZnPcIR710 presented a significantly enhanced cytotoxicity on human breast cancer MCF-7 cells compared with ZnPc-IR710(survival rate of tumor cells was 39% vs. 57% at a concentration of 50 nmol L-1). Moreover, in vivo study showed that E. coli@ZnPc-IR710 remarkably inhibited the tumor growth and resulted in a complete tumor growth suppress in subcutaneous mouse 4T1 breast tumor model. These results demonstrated the great promise of bacterial-guided photodynamic therapy(PDT) in the treatment of solid tumors, and provide a unique strategy to enhance the antitumor efficacy of PDT by utilizing bacterial vectors in tumors.展开更多
基金Supported by Agricultural Science and Technology Innovation Fund of Anhui Province(14B1148)Special Fund for Talent Development in Anhui Province(13C1109)Science and Technology Major Project of Anhui Province(15CZZ03132)~~
文摘In order to determine population genetic structure and pathogenicity of Ustilaginoidea virens in the major rice-growing areas of Anhui Province, total 92 U. virens strains were collected from 28 rice-planting counties (cities) of Anhui Province. Their genetic diversity was analyzed by using REP-PCR (repetitive extragenic palindromic sequence PCR), and pathogenicity was determined with artificial inoculation method. The results showed that U. virens in rice-growing regions of Anhui Province had a rich genetic diversity. At the similarity level of 0.76, the 92 U. virens strains could be classified into 7 groups. Significant differences were found in pathogenicity among the 24 U. virens strains belonging to different groups, which showed no association with territorial source of U. virens strain or cluster method adopted by this study. Strain pathogenicity and rice varieties showed significant specificity.
基金Project supported by the National Natural Science Foundation of China (No. 30870101)the Public Welfare Profession (Agricul-ture) Research Project (No. 200803008), China
文摘Fasciclin family proteins have been identified as cell adhesion molecules in various organisms. In this study, a novel Magnaporthe oryzae fasciclin-like protein encoding gene, named MoFLP1, was isolated from a subtractive suppressive cDNA library and functionally analyzed. Sequence analysis showed that the MoFLP1 gene contains an open reading frame (ORF) of 1050 nucleotides encoding 349 amino acids with a calculated molecular weight of 35.85 kDa and a pI of 7.76. The deduced MoFLP1 protein contains a 17-amino acid secretion signal sequence and an 18-amino acid sequence with the characteristics of a glycosylphosphotidylinositol (GPI) anchor additional signal at its N- and C-terminuses, respectively. Potential N-glycosylation sites and domains involving cell adhesion were also identified in MoFLP1. Sequence analysis and subcellular localization by the expression of MoFLP1-GFP fusion construct in M. oryzae indicated that the MoFLP1 protein is probably localized on the vacuole membrane. Two MoFLP1 null mutants generated by targeted gene disruption exhibited marked reduction of conidiation, conidial adhesion, appressorium turgor, and pathogenicity. Our results indicate that fasciclin proteins play important roles in fungal de-velopment and pathogenicity in M. oryzae.
基金supported by the National Natural Science Foundation of China (81572944, 21471033, 21877113 and 81971983)the CAS/SAFEA International Partnership Program for Creative Research Teams, the High-Level Entrepreneurship and Innovation Talents Projects in Fujian Province (2018-8-1)the FJIRSM&IUE Joint Research Fund (RHZX-2018-004)。
文摘Escherichia coli(E. coli) DH5α has been recognized as a non-pathogenic bacterial strain with tumor colonization ability. However, whether such a bacteria-driven drug-delivery system can improve the targeting of tumor therapy or not remains essentially untouched. Herein, a series of zinc phthalocyanine(ZnPc) photosensitizers with different numbers of charges were prepared and their electrostatic adhesion properties on E. coli were investigated via measuring their fluorescence intensities by flow cytometer. Among these ZnPc photosensitizers investigated, the ZnPc conjugate with four positive charges(named ZnPc-IR710) exhibited the highest loading capacity and the best fluorescence imaging performance of E. coli. With the help of E. coli, E. coli@ZnPcIR710 presented a significantly enhanced cytotoxicity on human breast cancer MCF-7 cells compared with ZnPc-IR710(survival rate of tumor cells was 39% vs. 57% at a concentration of 50 nmol L-1). Moreover, in vivo study showed that E. coli@ZnPc-IR710 remarkably inhibited the tumor growth and resulted in a complete tumor growth suppress in subcutaneous mouse 4T1 breast tumor model. These results demonstrated the great promise of bacterial-guided photodynamic therapy(PDT) in the treatment of solid tumors, and provide a unique strategy to enhance the antitumor efficacy of PDT by utilizing bacterial vectors in tumors.