期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
中医舌诊的客观化研究 被引量:32
1
作者 郭睿 王忆勤 +3 位作者 颜建军 李福凤 燕海霞 许朝霞 《中国中西医结合杂志》 CAS CSCD 北大核心 2009年第7期642-645,共4页
千百年来,中医舌诊只能凭医生肉眼观察,靠经验辨证,这不仅影响中医的继承,而且影响中医的提高和发展,因此迫切需要实现中医舌诊的标准化、客观化。随着中医现代化研究的进一步开展,以现代科学技术手段研究舌诊,使其定量化、客观化、标准... 千百年来,中医舌诊只能凭医生肉眼观察,靠经验辨证,这不仅影响中医的继承,而且影响中医的提高和发展,因此迫切需要实现中医舌诊的标准化、客观化。随着中医现代化研究的进一步开展,以现代科学技术手段研究舌诊,使其定量化、客观化、标准化,已成为舌诊研究的主要方向。本研究以舌诊的计算机自动识别过程为主线,对舌诊客观化中涉及的舌象采集、舌象分割及舌象特征分析等技术进行了探讨。 展开更多
关键词 诊客观化研究 采集 分割 舌象特征识别
下载PDF
Establishing and validating a spotted tongue recognition and extraction model based on multiscale convolutional neural network 被引量:7
2
作者 PENG Chengdong WANG Li +3 位作者 JIANG Dongmei YANG Nuo CHEN Renming DONG Changwu 《Digital Chinese Medicine》 2022年第1期49-58,共10页
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc... Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM. 展开更多
关键词 Spotted tongue recognition and extraction The feature of tongue Instance segmentation Multiscale convolutional neural network(CNN) Tongue diagnosis system Artificial intelligence(AI)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部